Skip to main content
Log in

Specific Heat and Phonon Transport in Er-Containing Rare-Earth–Aluminum Garnets at Liquid-Helium Temperatures

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The temperature dependences of the specific heat and the transport characteristics of thermal-frequency phonons in single crystals of the solid solutions of rare-earth aluminum garnets are studied at liquid-helium temperatures in the presence of Schottky-type low-energy excitations. The kinetic characteristics of phonons as functions of the solid solution composition are measured. The relation between the kinetic and thermophysical characteristics of the material in the solid solutions of rare-earth aluminum garnets is analyzed under conditions of a nonstationary process and the spatial inhomogeneity caused by the coordinate dependence of the state of low-energy excitations. The thermalization conditions in the nonequilibrium phonon–low-energy excitation system are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. W. Koechner, Solid State Laser Engineering (Springer, Berlin, 2006).

    MATH  Google Scholar 

  2. A. A. Kaminskii, Laser Crystals (Springer, New York, 1981).

    Book  Google Scholar 

  3. Glen A. Slack and D. W. Oliver, Phys. Rev. B 4, 592 (1971).

    Article  ADS  Google Scholar 

  4. V. L. Gurevich, Transport in Phonon Systems (North-Holland, Amsterdam, 1986).

    Google Scholar 

  5. S. N. Ivanov, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 653 (1992).

    Article  Google Scholar 

  6. A. A. Kaminskii, A. V. Taranov, E. N. Khazanov, and M. Sh. Akchurin, Quantum Electron. 42, 880 (2012).

    Article  Google Scholar 

  7. A. Kushino, Y. Aoki, N. Y. Yamasaki, T. Namiki, Y. Ishisaki, T. D. Matsuda, T. Ohashi, K. Mitsuda, and T. Yazawa, J. Appl. Phys. 90, 5812 (2001).

    Article  ADS  Google Scholar 

  8. S. Nagata, H. Sasaki, K. Suzuki, J. Kiuchi, and N. Wada, J. Phys. Chem. Sol. 62, 1123 (2001).

    Article  ADS  Google Scholar 

  9. K. Kamazawa, D. Louca, R. Morinaga, T. J. Sato, Q. Huang, J. R. D. Copley, and Y. Qiu, Phys. Rev. B 78, 064412 (2008).

    Article  ADS  Google Scholar 

  10. E. V. Shevchenko, E. V. Charnaya, E. N. Khazanov, A. V. Taranov, and A. S. Bugaev, Phys. Solid State 59, 733 (2017).

    Article  ADS  Google Scholar 

  11. E. V. Shevchenko, E. V. Charnaya, M. K. Lee, L. J. Chang, E. N. Khazanov, A. V. Taranov, and A. S. Bugaev, Phys. Lett. A 381, 330 (2017).

    Article  Google Scholar 

  12. E. N. Khazanov, A. V. Taranov, E. V. Shevchenko, and E. V. Charnaya, J. Exp. Theor. Phys. 121, 48 (2015).

    Article  ADS  Google Scholar 

  13. I. B. Levinson, JETP Lett. 27, 181 (1978).

    ADS  Google Scholar 

  14. S. N. Ivanov, E. N. Khazanov, T. Paszkiewicz, A. V. Taranov, and M. Wilczyński, Z. Phys. B 99, 535 (1996).

    Article  ADS  Google Scholar 

  15. R. J. Gutfeld and A. H. Nethercot, Jr., Phys. Rev. Lett. 12, 641 (1964).

    Article  ADS  Google Scholar 

  16. D. V. Kazakovtsev and Y. B. Levinson, Phys. Status Solidi B 136, 425 (1986).

    Article  ADS  Google Scholar 

  17. Y. K. Yogurtsu, A. J. Miller, and G. A. Sanders, Phys. C 13, 6585 (1980).

    Article  Google Scholar 

  18. S. N. Ivanov, A. V. Taranov, and E. N. Khazanov, Sov. Phys. JETP 72, 731 (1991).

    Google Scholar 

  19. S. N. Ivanov, E. N. Khazanov, and A. V. Taranov, Sov. Phys. Solid State 29, 385 (1987).

    Google Scholar 

  20. E. I. Salamatov, A. V. Taranov, E. N. Khazanov, E. V. Charnaya, and E. V. Shevchenko, J. Exp. Theor. Phys. 125, 768 (2017).

    Article  ADS  Google Scholar 

  21. E. I. Salamatov, A. V. Taranov, and E. N. Khazanov, J. Exp. Theor. Phys. 121, 267 (2015).

    Article  ADS  Google Scholar 

  22. V. I. Kozub, A. M. Rudin, and H. R. Schober, Phys. Rev. B 50, 6032 (1994).

    Article  ADS  Google Scholar 

  23. V. I. Kozub and A. M. Rudin, Phys. Solid State 38, 189 (1996).

    ADS  Google Scholar 

  24. E. V. Shevchenko, E. V. Charnaya, E. N. Khazanov, A. V. Taranov, and A. S. Bugaev, J. Alloys Compd. 717, 183 (2017).

    Article  Google Scholar 

  25. E. I. Salamatov, Phys. Solid State 44, 978 (2002).

    Article  ADS  Google Scholar 

  26. M. G. Beghi, C. E. Bottani, and V. Russo, J. Appl. Phys. 87, 1769 (2000).

    Article  ADS  Google Scholar 

  27. I. B. Levinson, JETP Lett. 37, 190 (1983).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Taranov.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salamatov, E.I., Taranov, A.V., Khazanov, E.N. et al. Specific Heat and Phonon Transport in Er-Containing Rare-Earth–Aluminum Garnets at Liquid-Helium Temperatures. J. Exp. Theor. Phys. 127, 705–712 (2018). https://doi.org/10.1134/S1063776118090091

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118090091

Keywords

Navigation