Skip to main content
Log in

Exciton Condensation in a Two-Dimensional System with Disorder

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The Bose–Einstein condensation of excitons in two-dimensional (2D) systems has been studied theoretically, taking into account both the random potential associated with imperfections of the structure and the finite exciton lifetime. It is shown that the disorder existing in the system makes condensation possible. The finite exciton lifetime limits the thermalization of excitons in the disordered system and sets an additional limit on the critical temperature of the transition. The effects of interparticle interaction and pump fluctuations have been analyzed. The phase correlator has been calculated and the failure of the condensate due to the effects of interaction and fluctuations has been analyzed. The propagation of perturbations in the condensate has been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Moskalenko, Sov. Phys. Solid State 4, 199 (1962).

    Google Scholar 

  2. J. M. Blatt, K. W. Böer, and W. Brandt, Phys. Rev. 126, 1691 (1962).

    Article  ADS  Google Scholar 

  3. L. V. Keldysh and A. N. Kozlov, JETP Lett. 5, 190 (1967).

    ADS  Google Scholar 

  4. L. V. Keldysh and A. N. Kozlov, Sov. Phys. JETP 27, 521 (1968).

    ADS  Google Scholar 

  5. V. A. Gergel’, R. F. Kazarinov, and R. A. Suris, Sov. Phys. JETP 26, 354 (1967).

    ADS  Google Scholar 

  6. V. A. Gergel’, R. F. Kazarinov, and R. A. Suris, Sov. Phys. JETP 27, 159 (1968).

    ADS  Google Scholar 

  7. V. A. Gergel’, R. F. Kazarinov, and R. A. Suris, Sov. Phys. JETP 31, 367 (1970).

    ADS  Google Scholar 

  8. A. V. Larionov, V. B. Timofeev, P. A. Ni, S. V. Dubonos, I. Hvam, and K. Soerensen, JETP Lett. 75, 570 (2002).

    Article  ADS  Google Scholar 

  9. D. Snoke, S. Denev, Y. Liu, L. Pfeiffer, and K. West, Nature (London, U.K.) 418, 754 (2002).

    Article  ADS  Google Scholar 

  10. M. Stern, V. Umansky, and I. Bar-Joseph, Science (Washington, DC, U. S.) 343, 55 (2014).

    Article  ADS  Google Scholar 

  11. A. V. Gorbunov and V. B. Timofeev, JETP Lett. 84, 329 (2006).

    Article  ADS  Google Scholar 

  12. V. B. Timofeev, A. V. Gorbunov, and D. A. Demin, J. Low Temp. Phys. 37, 179 (2011).

    Article  Google Scholar 

  13. L. V. Butov, J. Exp. Theor. Phys. 122, 434 (2016).

    Article  ADS  Google Scholar 

  14. M. Richard, J. Kasprzak, R. André, R. Romestain, Le Si Dang, G. Malpuech, and A. Kavokin, Phys. Rev. B 72, 201301 (2005).

    Article  ADS  Google Scholar 

  15. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, Nature (London, U.K.) 443, 409 (2006).

    Article  ADS  Google Scholar 

  16. V. V. Belykh, N. N. Sibeldin, V. D. Kulakovskii, M. M. Glazov, M. A. Semina, C. Schneider, S. Höfling, M. Kamp, and A. Forchel, Phys. Rev. Lett. 110, 137402 (2013).

    Article  ADS  Google Scholar 

  17. N. N. Bogolyubov and N. N. Bogolyubov, Jr., Introduction to Quantum Statistical Mechnaics (Nauka, Moscow, 1984; World Scientific, Singapore, 2009).

    MATH  Google Scholar 

  18. E. M. Lifshits and L. P. Pitaevski, Course of Theoretical Physics, Vol. 9: Statistical Physics, Part 2 (Fizmatlit, Moscow, 2001; Pergamon, New York, 1980).

    Google Scholar 

  19. V. N. Popov, Sov. J. Theor. Math. Phys. 11, 565 (1971).

    Article  Google Scholar 

  20. D. S. Fisher and P. C. Hohenberg, Phys. Rev. B 37, 4936 (1988).

    Article  ADS  Google Scholar 

  21. A. Griffin, D. W. Snoke, and S. Stringari, Bose–Einstein Condensation (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  22. G. Malpuech, D. D. Solnyshkov, H. Ouerdane, M. M. Glazov, and I. Shelykh, Phys. Rev. Lett. 98, 206402 (2007).

    Article  ADS  Google Scholar 

  23. G. M. Falco, T. Nattermann, and V. L. Pokrovsky, Phys. Rev. B 80, 104515 (2009).

    Article  ADS  Google Scholar 

  24. I. L. Aleiner, B. L. Altshuler, and G. V. Shlyapnikov, Nat. Phys. 6, 900 (2010).

    Article  Google Scholar 

  25. V. P. Michal, I. L. Aleiner, B. L. Altshuler, and G. V. Shlyapnikov, Proc. Natl. Acad. Sci. U.S.A. 113, E4455 (2016).

    Article  ADS  Google Scholar 

  26. D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, Phys. Rev. Lett. 76, 3005 (1996).

    Article  ADS  Google Scholar 

  27. M. A. Semina, R. A. Sergeev, and R. A. Suris, Semiconductors 40, 1338 (2006).

    Article  ADS  Google Scholar 

  28. F. Evers and A. D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008).

    Article  ADS  Google Scholar 

  29. I. M. Lifshits, Sov. Phys. JETP 26, 462 (1967).

    ADS  Google Scholar 

  30. L. A. Pastur, I. M. Lifshits, and S. A. Gredeskul, Introduction to the Theory of Disordered Systems (Nauka, Moscow, 1982; Wiley, New York, 1988).

    Google Scholar 

  31. L. P. Pitaevskii and S. Stringari, Bose–Einstein Condensation (Clarendon, Oxford, 2003).

    MATH  Google Scholar 

  32. D. G. Thomas, J. J. Hopfield, and W. M. Augustyniak, Phys. Rev. 140, A202 (1965).

    Article  ADS  Google Scholar 

  33. L. E. Golub, E. L. Ivchenko, and A. A. Kiselev, J. Opt. Soc. Am. B 13, 1199 (1996).

    Article  ADS  Google Scholar 

  34. A. A. Kiselev, Semiconductors 32, 504 (1998).

    Article  ADS  Google Scholar 

  35. S. A. Tarasenko, A. A. Kiselev, E. L. Ivchenko, A. Dinger, M. Baldauf, C. Klingshirn, H. Kalt, S. D. Baranovskii, R. Eichmann, and P. Thomas, Semicond. Sci. Technol. 16, 486 (2001).

    Article  ADS  Google Scholar 

  36. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, New York, 1984; Moscow, Nauka, 1979).

    Book  Google Scholar 

  37. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1974; Pergamon, New York, 1977, 3rd ed.).

    Google Scholar 

  38. C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P. Schwendimann, Phys. Rev. B 58, 7926 (1998).

    Article  ADS  Google Scholar 

  39. R. A. Suris, J. Exp. Theor. Phys. 122, 602 (2016).

    Article  ADS  Google Scholar 

  40. V. M. Kovalev and A. V. Chaplik, JETP Lett. 92, 185 (2010).

    Article  ADS  Google Scholar 

  41. I. M. Khalatnikov, The Theory of Superfluidity (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  42. M. Wouters and I. Carusotto, Phys. Rev. Lett. 99, 140402 (2007).

    Article  ADS  Google Scholar 

  43. I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299 (2013).

    Article  ADS  Google Scholar 

  44. G. Roumpos, M. Lohse, W. H. Nitsche, J. Keeling, M. H. Szymanska, P. B. Littlewood, A. Löffler, S. Höfling, L. Worschech, A. Forchel, and Y. Yamamoto, Proc. Natl. Acad. Sci. U.S.A. 109, 6467 (2012).

    Article  ADS  Google Scholar 

  45. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Glazov.

Additional information

Original Russian Text © M.M. Glazov, R.A. Suris, 2018, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 153, No. 6, pp. 1001–1011.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glazov, M.M., Suris, R.A. Exciton Condensation in a Two-Dimensional System with Disorder. J. Exp. Theor. Phys. 126, 833–841 (2018). https://doi.org/10.1134/S1063776118060092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118060092

Navigation