Skip to main content
Log in

Subterahertz Longitudinal Phonon Modes Propagating in a Lipid Bilayer Immersed in an Aqueous Medium

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The properties of subterahertz longitudinal acoustic phonon modes in the hydrophobic region of a lipid bilayer immersed in a compressible viscous aqueous medium are investigated theoretically. An approximate expression is obtained for the Mandelstam–Brillouin components of the dynamic structure factor of a bilayer. The analysis is based on a generalized hydrodynamic model of the “two-dimensional lipid bilayer + three-dimensional fluid medium” system, as well as on known sharp estimates for the frequencies and lifetimes of long-wavelength longitudinal acoustic phonons in a free hydrated lipid bilayer and in water, obtained from inelastic X-ray scattering experiments and molecular dynamics simulations. It is shown that, for characteristic values of the parameters of the membrane system, subterahertz longitudinal phonon-like excitations in the hydrophobic part of the bilayer are underdamped. In this case, the contribution of the viscous flow of the aqueous medium to the damping of a longitudinal membrane mode is small compared with the contribution of the lipid bilayer. Quantitative estimates of the damping ratio agree well with the experimental results for the vibration mode of the enzyme lysozyme in aqueous solution [1]. It is also shown that a coupling between longitudinal phonon modes of the bilayer and relaxation processes in its fluid environment gives rise to an additional peak in the scattering spectrum, which corresponds to a non-propagating mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Turton, H. M. Senn, T. Harwood, et al., Nat. Commun. 5, 3999 (2014).

    Article  Google Scholar 

  2. M. Gonzalez-Jimenez, G. Ramakrishnan, T. Harwood, et al., Nat. Commun. 7, 11799 (2016).

    Article  ADS  Google Scholar 

  3. M. Zhernenkov, D. Bolmatov, D. Soloviov, et al., Nat. Commun. 7, 11575 (2016).

    Article  ADS  Google Scholar 

  4. E. G. Brandt and O. Edholm, Biophys. J. 96, 1828 (2009).

    Article  ADS  Google Scholar 

  5. G. Monaco, A. Cunsolo, G. Ruocco, and F. Sette, Phys. Rev. E 60, 5505 (1999).

    Article  ADS  Google Scholar 

  6. V. E. Zakhvataev, Biophysics 62, 396 (2017).

    Article  Google Scholar 

  7. C. Aponte-Santamaría, J. Brunken, and F. Grater, J. Am. Chem. Soc. 139, 13588 (2017).

    Article  Google Scholar 

  8. R. K. Adair, Biophys. 82, 1147 (2002).

    Google Scholar 

  9. R. K. Adair, Bioelectromagn. 24, 39 (2003).

    Article  Google Scholar 

  10. P. Stevenson and A. Tokmakoff, J. Am. Chem. Soc. 139, 4743 (2017).

    Article  Google Scholar 

  11. T. M. Weiss, P. J. Chen, H. Sinn, et al., Biophys. J. 84, 3767 (2003).

    Article  Google Scholar 

  12. V. E. Zakhvataev, J. Exp. Theor. Phys. 125, 167 (2017).

    Article  ADS  Google Scholar 

  13. S. H. Chen, C. Y. Liao, H. W. Huang, et al., Phys. Rev. Lett. 86, 740 (2001).

    Article  ADS  Google Scholar 

  14. V. C. Nibali, G. D’Angelo, and M. Tarek, Phys. Rev. E 89, 050301 (2014).

    Article  Google Scholar 

  15. O. Kel, A. Tamimi, M. C. Thielges, and M. D. Fayer, J. Am. Chem. Soc. 135, 11063 (2013).

    Article  Google Scholar 

  16. P. J. Chen, Y. Liu, T. M. Weiss, et al., Biophys. Chem. 105, 721 (2003).

    Article  Google Scholar 

  17. M. C. Rheinstädter, C. Ollinger, G. Fragneto, et al., Phys. Rev. Lett. 93, 108107 (2004).

    Article  ADS  Google Scholar 

  18. J. S. Hub, T. Salditt, M. C. Rheinstädter, and B. L. de Groot, Biophys. J. 93, 3156 (2007).

    Article  ADS  Google Scholar 

  19. K. Amann-Winkel, M. C. Bellissent-Funel, L. E. Bove, et al., Chem. Rev. 116, 7570 (2016).

    Article  Google Scholar 

  20. N. K. Ailawadi, A. Rahman, and R. Zwanzig, Phys. Rev. A 4, 1616 (1971).

    Article  ADS  Google Scholar 

  21. R. D. Mountain, Adv. Molec. Relax. Proc. 9, 225 (1976).

    Article  Google Scholar 

  22. L. van Hove, Phys. Rev. 95, 249 (1954).

    Article  ADS  Google Scholar 

  23. U. Seifert and S. A. Langer, Europhys. Lett. 23, S71 (1993).

    Article  ADS  Google Scholar 

  24. A. F. Bitbol, D. Constantin, and J. B. Fournier, PLoS One 7, e48306 (2012).

    Article  ADS  Google Scholar 

  25. J. M. Ortiz de Záate and J. V. Sengers, Hydrodynamic Fluctuations in Fluids and Fluid Mixtures (Elsevier Scientific, Amsterdam, 2006).

    Google Scholar 

  26. F. Brochard and J. F. Lennon, J. de Phys. 36, 1035 (1975).

    Article  Google Scholar 

  27. E. I. Kats and V. V. Lebedev, Phys. Rev. E 49, 3003 (1994).

    Article  ADS  Google Scholar 

  28. M. Tarek, D. J. Tobias, S. H. Chen, and M. L. Klein, Phys. Rev. Lett. 87, 238101 (2001).

    Article  ADS  Google Scholar 

  29. E. I. Kats, V. V. Lebedev, and S. V. Malinin, J. Exp. Theor. Phys. 86, 1149 (1998).

    Article  ADS  Google Scholar 

  30. S. V. Baoukina and S. I. Mukhin, J. Exp. Theor. Phys. 99, 875 (2004).

    Article  ADS  Google Scholar 

  31. E. G. Brandt, A. R. Braun, J. N. Sachs, et al., Biophys. J. 100, 2104 (2011).

    Article  ADS  Google Scholar 

  32. M. C. Watson, Y. Peng, Y. Zheng, and F. L. H. Brown, J. Chem. Phys. 135, 194701 (2011).

    Article  ADS  Google Scholar 

  33. R. J. Bingham, S. W. Smye, and P. D. Olmsted, Europhys. Lett. 111, 18004 (2015).

    Article  ADS  Google Scholar 

  34. E. I. Kats and V. V. Lebedev, Sov. Phys. JETP 67, 940 (1988).

    Google Scholar 

  35. T. Heimburg, Biochim. Biophys. Acta 1415, 147 (1998).

    Article  Google Scholar 

  36. I. P. Omelyan, I. M. Mryglod, and M. V. Tokarchuk, Condens. Matter Phys. 8, 25 (2005).

    Article  Google Scholar 

  37. U. Bafile, E. Guarini, and F. Barocchi, Phys. Rev. E 73, 061203 (2006).

    Article  ADS  Google Scholar 

  38. L. Saviot, C. H. Netting, and D. B. Murray, J. Phys. Chem. B 111, 7457 (2007).

    Article  Google Scholar 

  39. V. E. Zakhvataev, Biol. Membrany 35 (3) (2018).

    Google Scholar 

  40. R. D. Mountain, J. Res. Natl. Bur. Standards A: Phys. Chem. 70, 207 (1966).

    Article  Google Scholar 

  41. N. D. Devyatkov, M. B. Golant, and O. V. Betskii, Millimeter Waves and Their Role in Vital Processes (Radio Svyaz’, Moscow, 1991) [in Russian].

    Google Scholar 

  42. H. Fröhlich, Int. J. Quantum Chem. 2, 641 (1968).

    Article  ADS  Google Scholar 

  43. T. W. Allen, O. S. Andersen, and B. J. Roux, Gen. Physiol. 124, 251 (2004).

    Article  Google Scholar 

  44. R. Phillips, T. Ursell, P. Wiggins, and P. Sens, Nature (London, U.K.) 459, 379 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Zakhvataev.

Additional information

Original Russian Text © V.E. Zakhvataev, 2018, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 153, No. 4, pp. 658–670.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakhvataev, V.E. Subterahertz Longitudinal Phonon Modes Propagating in a Lipid Bilayer Immersed in an Aqueous Medium. J. Exp. Theor. Phys. 126, 550–560 (2018). https://doi.org/10.1134/S1063776118030111

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118030111

Navigation