Skip to main content
Log in

Intermode Correlation Properties of Laser Radiation Propagating through a Gas Cell with Alkali Atoms under Conditions of a Coherent Population Trapping Resonance

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A theory of excitation of a coherent population trapping resonance in hot alkali-metal atoms in a cell with buffer gas is constructed, taking into account the finite spectral width of two-component radiation, its vector properties, and the hyperfine and Zeeman structures of atoms. The propagation of intermode correlations in an optically dense gas cell is studied. It is found that in the case of partially correlated input modes, their correlation degree at the output can increase. This effect can be used for filtering the incoherent part of radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Alzetta, A. Gozzini, L. Moi et al., Nuovo Cim. B 36, 5 (1976).

    Article  ADS  Google Scholar 

  2. E. Arimondo and G. Orriols, Lett. Nuovo Cim. 17, 333 (1976).

    Article  ADS  Google Scholar 

  3. H. R. Gray, R. M. Whitley, and C. R. Stroud, Opt. Lett. 3, 218 (1978).

    Article  ADS  Google Scholar 

  4. B. D. Agap’ev, M. B. Gornyi, B. G. Matisov, et al., Phys. Usp. 36, 763 (1993).

    Article  ADS  Google Scholar 

  5. M. B. Gornyi, B. G. Matisov, and Yu. V. Rozhdestvenskii, Sov. Phys. JETP 68, 728 (1989).

    Google Scholar 

  6. E. Arimondo, Prog. Opt. 35, 257 (1996).

    Article  Google Scholar 

  7. S. Brandt, A. Nagel, R. Wynands, and D. Meshede, Phys. Rev. A 56, 1063 (1997).

    Article  ADS  Google Scholar 

  8. J. Vanier, A. Godone, and F. Levi, Phys. Rev. A 58, 2345 (1998).

    Article  ADS  Google Scholar 

  9. R. Wynands and A. Nagel, Appl. Phys. B 68, 1 (1999).

    Article  ADS  Google Scholar 

  10. M. Erhard and H. Helm, Phys. Rev. A 63, 043813 (2001).

    Article  ADS  Google Scholar 

  11. M. Merimaa, Th. Lindvall, I. Tittonen, and E. Ikonen, J. Opt. Soc. Am. B 20, 273 (2003).

    Article  ADS  Google Scholar 

  12. M. V. Balabas, T. Karaulanov, M. P. Ledbetter, and D. Budker, Phys. Rev. Lett. 105, 070801 (2010).

    Article  ADS  Google Scholar 

  13. H. J. Lee and H. S. Moon, J. Opt. Soc. Am. B 30, 2301 (2013).

    Article  ADS  Google Scholar 

  14. D. V. Brazhnikov, A. V. Taihenahev, A. M. Tumaikin, and V. I. Yudin, Laser Phys. Lett. 11, 125702 (2014).

    Article  ADS  Google Scholar 

  15. O. A. Kocharovskaya and Ya. I. Khanin, JETP Lett. 48, 630 (1988).

    ADS  Google Scholar 

  16. S. Harris, Phys. Rev. Lett. 62, 1022 (1989).

    Article  ADS  Google Scholar 

  17. M. O. Scully, S. Y. Zhu, and A. Gavrielides, Phys. Rev. Lett. 62, 2813 (1989).

    Article  ADS  Google Scholar 

  18. A. Imamoglu and S. Harris, Opt. Lett. 14, 1344 (1989).

    Article  ADS  Google Scholar 

  19. O. Kocharovskaya and P. Mandel, Phys. Rev. A 42, 523 (1990).

    Article  ADS  Google Scholar 

  20. A. S. Zibrov, M. D. Lukin, D. E. Nikonov, et al., Phys. Rev. Lett. 75, 1499 (1995).

    Article  ADS  Google Scholar 

  21. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).

    Article  ADS  Google Scholar 

  22. A. M. Akulshin, A. Cimmino, A. I. Sidorov, et al., Phys. Rev. A 67, 011801(R) (2003).

    Article  ADS  Google Scholar 

  23. E. E. Mikhailov, V. A. Sautenkov, I. Novikova, and G. R. Welh, Phys. Rev. A 69, 063808 (2004).

    Article  ADS  Google Scholar 

  24. M. Fleishhauer and M. D. Lukin, Phys. Rev. Lett. 84, 5094 (2000).

    Article  ADS  Google Scholar 

  25. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature (London) 409, 490 (2001).

    Article  ADS  Google Scholar 

  26. M. D. Lukin, Rev. Mod. Phys. 75, 457 (2003).

    Article  ADS  Google Scholar 

  27. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).

    Article  ADS  Google Scholar 

  28. A. Aspet, E. Arimondo, R. Kaiser, et al., Phys. Rev. Lett. 61, 826 (1988).

    Article  ADS  Google Scholar 

  29. M. Kasevih and S. Chu, Phys. Rev. Lett. 69, 1741 (1992).

    Article  ADS  Google Scholar 

  30. I. E. Mazets and B. G. Matisov, JETP Lett. 60, 703 (1994).

    ADS  Google Scholar 

  31. A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, JETP Lett. 65, 779 (1997).

    Article  ADS  Google Scholar 

  32. C. F. Roos, D. Leibfried, A. Mundt, et al., Phys. Rev. Lett. 85, 5547 (2000).

    Article  ADS  Google Scholar 

  33. J. Vanier, Appl. Phys. B 81, 421 (2005).

    Article  ADS  Google Scholar 

  34. S. A. Zibrov, V. L. Velichansky, A. S. Zibrov, A. V. Tachenachev, and V. I. Yudin, JETP Lett. 82, 477 (2005).

    Article  Google Scholar 

  35. G. Kazakov, B. Matisov, I. Mazets, et al., Phys. Rev. A 72, 063408 (2005).

    Article  ADS  Google Scholar 

  36. S. A. Zibrov, I. Novikova, D. F. Phillips, et al., Phys. Rev. A 81, 013833 (2010).

    Article  ADS  Google Scholar 

  37. K. A. Barantsev, E. N. Popov, A. N. Litvinov, and V. M. Petrov, Radiotekhnika 12, 164 (2016).

    Google Scholar 

  38. I. M. Sokolov, Quantum Electron. 45, 947 (2015).

    Article  ADS  Google Scholar 

  39. A. Akulshin, A. Celikov, and V. Velichansky, Opt. Commun. 84, 139 (1991).

    Article  ADS  Google Scholar 

  40. M. Stahler, R. Wynands, S. Knappe, et al., Opt. Lett. 27, 1472 (2002).

    Article  ADS  Google Scholar 

  41. P. D. D. Shwindt, S. Knappe, V. Shah, et al., Appl. Phys. Lett. 85, 6409 (2004).

    Article  ADS  Google Scholar 

  42. V. V. Yashuk, J. Granwehr, D. F. Kimbal, et al., Phys. Rev. Lett. 93, 160801 (2004).

    Article  ADS  Google Scholar 

  43. K. Cox, V. I. Yudin, A. V. Taichenachev, et al., Phys. Rev. A 83, 015801 (2011).

    Article  ADS  Google Scholar 

  44. A. Javan, O. Kocharovskaya, H. Lee, and M. O. Scully, Phys. Rev. A 66, 013805 (2002).

    Article  ADS  Google Scholar 

  45. M. S. Feld and A. Javan, Phys. Rev. 2, 177 (1969).

    Google Scholar 

  46. O. Firstenberg, M. Shuker, A. Ben-Kish, et al., Phys. Rev. A 76, 013818 (2007).

    Article  ADS  Google Scholar 

  47. G. Kazakov, B. Matisov, A. Litvinov, and I. Mazets, J. Phys. B 40, 3851 (2007).

    Article  ADS  Google Scholar 

  48. Y. Xiao, I. Novikova, D. F. Phillips, and R. L. Walsworth, Phys. Rev. Lett. 96, 043601 (2006).

    Article  ADS  Google Scholar 

  49. N. F. Ramsay, Rev. Mod. Phys. 62, 541 (1990).

    Article  ADS  Google Scholar 

  50. E. Breschi, G. Kazakov, C. Schori, et al., Phys. Rev. A 82, 063810 (2010).

    Article  ADS  Google Scholar 

  51. G. A. Kazakov, A. N. Litvinov, B. G. Matisov, et al., J. Phys. B 44, 235401 (2011).

    Article  ADS  Google Scholar 

  52. G. A. Kazakov, A. N. Litvinov, and B. G. Matisov, Quantum Electron. 42, 185 (2012).

    Article  ADS  Google Scholar 

  53. J.-M. Danet, M. Lours, S. Guérandel, and E. Clercq, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 61, 567 (2014).

    Article  Google Scholar 

  54. Y. Yano, W. Gao, S. Goka, and M. Kajita, Phys. Rev. A 90, 013826 (2014).

    Article  ADS  Google Scholar 

  55. V. I. Yudin, A. V. Taichenachev, and M. Yu. Basalaev, Phys. Rev. A 93, 013820 (2016).

    Article  ADS  Google Scholar 

  56. Y. Yano, S. Goka, and M. Kajita, arXiv:1701.05696v1.

  57. M. Huang and J. C. Camparo, Phys. Rev. A 85, 012509 (2012).

    Article  ADS  Google Scholar 

  58. P. Yun, F. S Tricot, and C. E. Calosso, Phys. Rev. Appl. 7, 014018 (2017).

    Article  ADS  Google Scholar 

  59. D. Aumiler, Phys. Rev. A 82, 055402 (2010).

    Article  ADS  Google Scholar 

  60. A. Litvinov, G. Kazakov, B. Matisov, et al., J. Phys. B 43, 1 (2010).

    Google Scholar 

  61. A. Sargsyan, D. Sarkisyan, and A. Papoyan, Phys. Rev. A 73, 033803 (2006).

    Article  ADS  Google Scholar 

  62. K. A. Barantsev, E. N. Popov, and A. N. Litvinov, J. Exp. Theor. Phys. 121, 758 (2015).

    Article  ADS  Google Scholar 

  63. Y. A. Fofanov, A. S. Kuraptsev, I. M. Sokolov, and M. D. Havey, Phys. Rev. A 87, 063839 (2013).

    Article  ADS  Google Scholar 

  64. A. S. Kuraptsev and I. M. Sokolov, Phys. Rev. A 90, 012511 (2014).

    Article  ADS  Google Scholar 

  65. S. E. Skipetrov and I. M. Sokolov, Phys Rev. Lett. 114, 053902 (2015).

    Article  ADS  Google Scholar 

  66. S. G. Rautian, G. I. Smirnov, and A. M. Shalagin, Nonlinear Resonances in Atom and Molecular Spectra (Nauka, Novosibirsk, 1979) [in Russian].

    Google Scholar 

  67. D. A. Steck, Rubidium 87 D Line Data (2001). http:/steck.us/alkalidata.

    Google Scholar 

  68. I. E. Mazets and B. G. Matisov, Sov. Phys. JETP 74, 13 (1992).

    Google Scholar 

  69. D. F. Walls, Nature 306, 141 (1983).

    Article  ADS  Google Scholar 

  70. D. F. Smirnov and A. S. Troshin, Sov. Phys. Usp. 30, 851 (1987).

    Article  ADS  Google Scholar 

  71. R. Distel’, Graph Theory (Inst. Mat., Novosibirsk, 2002) [in Russian].

    Google Scholar 

  72. B. J. Dalton and P. L. Knight, J. Phys. B 15, 3997 (1982).

    Article  ADS  Google Scholar 

  73. B. J. Dalton and P. L. Knight, Opt. Comm. 42, 411 (1982).

    Article  ADS  Google Scholar 

  74. B. J. Dalton, R. McDuff, and P. L. Knight, Opt. Acta 32, 61 (1985).

    Article  ADS  Google Scholar 

  75. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ., Cambridge, 1995; Fizmatlit, Moscow, 2000).

    Book  Google Scholar 

  76. A. V. Taichenachev, V. I. Yudin, V. L. Velichansky, and S. A. Zibrov, JETP Lett. 82, 398 (2005).

    Article  ADS  Google Scholar 

  77. J. Deng, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 48, 6 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Barantsev.

Additional information

Original Russian Text © K.A. Barantsev, A.N. Litvinov, E.N. Popov, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 6, pp. 1165–1178.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barantsev, K.A., Litvinov, A.N. & Popov, E.N. Intermode Correlation Properties of Laser Radiation Propagating through a Gas Cell with Alkali Atoms under Conditions of a Coherent Population Trapping Resonance. J. Exp. Theor. Phys. 125, 993–1004 (2017). https://doi.org/10.1134/S106377611710003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611710003X

Navigation