Skip to main content
Log in

Transition from gas-kinetic to minimal metal-type conductivity in a supercritical fluid of metal vapor

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We have proposed a peculiar model of the plasma of dense metal vapors, containing atoms embedded into the electron jelly, as well as free (thermally ionized) electrons and ions. The main feature of the model is the presence of the electron jelly existing at any density of the atomic component. The number of electrons in the jelly increases under compression. The process of its formation can be called the “cold” ionization, or pressure ionization. The composition of the gas–plasma mixture, including the concentration of atoms and electrons in the jelly, as well as the concentration of free thermally ionized electrons and ions, has been calculated. The conductivity of dense vapors is determined by the sum of the conductivities of thermal electrons (which is calculated using the Frost formula) and jelly electrons (which is calculated by the Regel–Ioffe formula for the minimal metal-type conductivity). The concentration of thermal electrons decreases and the concentration of jelly electrons increases upon compression of the vapor. Accordingly, the conductivity varies from the conductivity of thermal electrons to the conductivity of jelly electrons, continuously passing through the minimum. The calculated values of the conductivity of supercritical metal vapors are in satisfactory agreement with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Brazhkin, A. G. Lyapin, V. N. Ryzhov, K. Trachenko, Yu. D. Fomin, and E. N. Tsiok, Phys. Usp. 55, 1061 (2012).

    Article  ADS  Google Scholar 

  2. A. A. Likal’ter, Phys. Usp. 43, 777 (2000).

    Article  Google Scholar 

  3. A. W. DeSilva and H.-J. Kunze, Phys. Rev. E 49, 4448 (1994).

    Article  ADS  Google Scholar 

  4. A. W. DeSilva and J. D. Katsouros, Phys. Rev. E 57, 5945 (1998).

    Article  ADS  Google Scholar 

  5. A. W. DeSilva and A. D. Rakhel, Contr. Plasma Phys. 45, 236 (2005).

    Article  ADS  Google Scholar 

  6. I. Krisch and H.-J. Kunze, Phys. Rev. E 58, 6557 (1998).

    Article  ADS  Google Scholar 

  7. Yu. V. Ivanov, V. B. Mintsev, V. E. Fortov, and A. N. Dremin, Sov. Phys. JETP 44, 112 (1976).

    ADS  Google Scholar 

  8. V. E. Fortov, V. Ya. Ternovo, M. V. Zhernokletov, M. A. Mochalov, A. L. Mikhailov, A. S. Filimonov, A. A. Pyalling, V. B. Mintsev, V. K. Gryaznov, and I. L. Iosilevski, J. Exp. Theor. Phys. 97, 259 (2003).

    Article  ADS  Google Scholar 

  9. R. Chau, A. C. Mitchell, R. W. Minich, and W. J. Nellis, Phys. Rev. Lett. 90, 245501 (2003).

    Article  ADS  Google Scholar 

  10. A. L. Khomkin and A. S. Shumikhin, J. Exp. Theor. Phys. 114, 89 (2012).

    Article  ADS  Google Scholar 

  11. A. L. Khomkin and A. S. Shumikhin, High Temp. 50, 307 (2012).

    Article  Google Scholar 

  12. E. M. Apfelbaum, Phys. Chem. Liquids 48, 534 (2010).

    Article  Google Scholar 

  13. R. Redmer, Phys. Rev. E 59, 1073 (1999).

    Article  ADS  Google Scholar 

  14. E. M. Apfelbaum, Czech. J. Phys. 56, B618 (2006).

    Article  Google Scholar 

  15. Z. J. Fu, L.-J. Jia, J.-H. Xia, et al., Acta Phys. Sin. 65, 065201 (2016).

    Google Scholar 

  16. V. B. Bobrov, High Temperatures 54, 447 (2016).

    Article  Google Scholar 

  17. W. Ebeling and W. Richert, Phys. Lett. A 108, 80 (1985).

    Article  ADS  Google Scholar 

  18. L. P. Kudrin, Statistical Plasma Physics (Atomizdat, Moscow, 1974) [in Russian].

    Google Scholar 

  19. X. Sha and R. E. Cohen, J. Phys.: Condens. Matter 23, 075401 (2011).

    ADS  Google Scholar 

  20. D. V. Knyazev and P. R. Levashov, Phys. Plasmas 21, 073302 (2014).

    Article  ADS  Google Scholar 

  21. P. Sperling, E. J. Gamboa, H. J. Lee, et al., Phys. Rev. Lett. 115, 115001 (2015).

    Article  ADS  Google Scholar 

  22. Yu. V. Petrov, K. P. Migdal, N. A. Inogamov, and S. I. Anisimov, JETP Lett. 104, 431 (2016).

    Article  ADS  Google Scholar 

  23. D. J. Burrill, D. V. Feinblum, M. R. J. Charest, and C. E. Starrett, High Energy Density Phys. 19, 1 (2016).

    Article  ADS  Google Scholar 

  24. M. P. Desjarlais, J. D. Kress, and L. A. Collins, Phys. Rev. E 66, 025401 (2002).

    Article  ADS  Google Scholar 

  25. T. Sasaki, M. Nakajima, T. Kawamura, and K. Horioka, Phys. Plasmas 17, 084501 (2010).

    Article  ADS  Google Scholar 

  26. A. L. Khomkin and A. S. Shumikhin, J. Exp. Theor. Phys. 123, 891 (2016).

    Article  ADS  Google Scholar 

  27. M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1983).

    Article  ADS  Google Scholar 

  28. V. S. Vorob’ev and A. L. Khomkin, Teor. Mat. Fiz. 26, 364 (1976).

    Google Scholar 

  29. I. A. Mulenko, A. L. Khomkin, and A. S. Shumikhin, High Temp. 42, 842 (2004).

    Article  Google Scholar 

  30. A. L. Khomkin and A. S. Shumilin, High Temperatures 54, 796 (2016).

    Article  Google Scholar 

  31. A. L. Khomkin and A. S. Shumikhin, J. Exp. Theor. Phys. 118, 72 (2014).

    Article  ADS  Google Scholar 

  32. A. L. Khomkin and A. S. Shumikhin, J. Exp. Theor. Phys. 120, 672 (2015).

    Article  ADS  Google Scholar 

  33. A. Banerjia and J. R. Smith, Phys. Rev. B 37, 6632 (1988).

    Article  ADS  Google Scholar 

  34. J. H. Rose, J. R. Smith, and J. Ferrante, Phys. Rev. B 28, 1835 (1983).

    Article  ADS  Google Scholar 

  35. E. Clementi and C. Roetti, At. Data Nucl. Data Tables 14, 177 (1974).

    Article  ADS  Google Scholar 

  36. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1971).

    MATH  Google Scholar 

  37. A. A. Radtsig and B. M. Smirnov, Reference Data on Atoms, Molecules, and Ions (Atomizdat, Moscow, 1980; Springer, Berlin, 1985).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Khomkin.

Additional information

Original Russian Text © A.L. Khomkin, A.S. Shumikhin, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 151, No. 6, pp. 1169–1178.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khomkin, A.L., Shumikhin, A.S. Transition from gas-kinetic to minimal metal-type conductivity in a supercritical fluid of metal vapor. J. Exp. Theor. Phys. 124, 1001–1009 (2017). https://doi.org/10.1134/S1063776117050144

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117050144

Navigation