Skip to main content
Log in

Effect of canted antiferromagnetic order on the electronic structure in the t–J* model within the cluster perturbation theory

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The electronic structure in the two-dimensional t–J* model with canted antiferromagnetic order in an external magnetic field has been calculated within the cluster perturbation theory. In zero external field, the evolution of the Fermi surface with n-type doping has been obtained in good agreement with experimental data on cuprate superconductors. It has been shown that the inclusion of short-range correlations can result in a nonmonotonic dependence of the spectral weight distribution at the Fermi level on the external magnetic field. In contrast to the case of electron doping, such changes in the case of hole doping can be expected at experimentally achievable fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Damacelli, Z. Hussein, and Z. X. Shen, Rev. Mod. Phys. 75, 473 (2003).

    Article  ADS  Google Scholar 

  2. M. Platé, J. D. F. Mottershead, I. S. Elfimov, et al., Phys. Rev. Lett. 95, 077001 (2005).

    Article  ADS  Google Scholar 

  3. T. Yoshida, X. J. Zhou, K. Tanaka, et al., Phys. Rev. B 74, 224510 (2006).

    Article  ADS  Google Scholar 

  4. T. Yoshida, M. Hashimoto, S. Ideta, et al., Phys. Rev. Lett. 103, 037004 (2009).

    Article  ADS  Google Scholar 

  5. M. Ikeda, T. Yoshida, A. Fujimori, et al., Phys. Rev. B 80, 014510 (2009).

    Article  ADS  Google Scholar 

  6. N. Doiron-Leyraud, C. Proust, D. LeBoeuf, et al., Nature 447, 565 (2007).

    Article  ADS  Google Scholar 

  7. D. LeBoeuf, N. Doiron-Leyraud, J. Levallois, et al., Nature 450, 533 (2007).

    Article  ADS  Google Scholar 

  8. C. Jaudet, D. Vignolles, A. Audouard, et al., Phys. Rev. Lett. 100, 187005 (2008).

    Article  ADS  Google Scholar 

  9. S. E. Sebastian, N. Harrison, E. Palm, et al., Nature 454, 200 (2008).

    Article  ADS  Google Scholar 

  10. B. Vignolle, A. Carrington, R. A. Cooper, et al., Nature 455, 952 (2008).

    Article  ADS  Google Scholar 

  11. C. Jaudet, D. Vignolles, A. Audouard, et al., Phys. Rev. B 82, 140501 (R) (2010).

    Article  Google Scholar 

  12. P. M. C. Rourke, A. F. Bangura, T. M. Benseman, et al., New J. Phys. 12, 105009 (2010).

    Article  ADS  Google Scholar 

  13. T. Helm, M. V. Kartsovnik, M. Bartkowiak, et al., Phys. Rev. Lett. 103, 157002 (2009).

    Article  ADS  Google Scholar 

  14. N. Barišic, S. Badoux, M. K. Chan, et al., Nat. Phys. 9, 761 (2013).

    Article  Google Scholar 

  15. A. Sherman, arXiv:cond-mat/1503.04934.

  16. T. Wu, H. Mayaffre, S. Krämer et al., Nature 477, 191 (2011).

    Article  ADS  Google Scholar 

  17. N. Doiron-Leyraud, S. Badoux, S. René de Cotret, et al., Nature Comm. 6, 6034 (2015).

    Article  ADS  Google Scholar 

  18. A. Allais, D. Chowdhury, and S. Sachdev, Nature Comm. 5, 5771 (2014).

    Article  ADS  Google Scholar 

  19. J. M. Tranquada, B. J. Sternlieb, J. D. Axe, et al., Nature 375, 561 (1995).

    Article  ADS  Google Scholar 

  20. B. Keimer, N. Belk, R. J. Birgeneau, et al., Phys. Rev. B 46, 14034 (1992).

    Article  ADS  Google Scholar 

  21. E. M. Motoyama, G. Yu, I. M. Vishik, et al., Nature Lett. 445, 187 (2007).

    Article  ADS  Google Scholar 

  22. L. N. Bulaevskii, E. L. Nagaev, and D. L. Khomskii, Sov. Phys. JETP 27, 836 (1968).

    ADS  Google Scholar 

  23. K. A. Chao, J. Spalek, and A. M. Oles, J. Phys. C: Condens. Matter 10, L271 (1977).

    Article  Google Scholar 

  24. J. L. Richard and V. Yu. Yushankhai, Phys. Rev. B 50, 12927 (1994).

    Article  ADS  Google Scholar 

  25. V. I. Kuz’min, S. V. Nikolaev, and S. G. Ovchinnikov, JETP Lett. 103, 125 (2016).

    Article  ADS  Google Scholar 

  26. V. I. Kuz’min, S. V. Nikolaev, and S. G. Ovchinnikov, Phys. Rev. B 90, 245104 (2014).

    Article  ADS  Google Scholar 

  27. D. Senechal, D. Perez, and M. Pioro-Ladriere, Phys. Rev. Lett. 84, 522 (2000).

    Article  ADS  Google Scholar 

  28. D. Senechal, D. Perez, and D. Plouffe, Phys. Rev. B 66, 075129 (2002).

    Article  ADS  Google Scholar 

  29. S. V. Nikolaev and S. G. Ovchinnikov, J. Exp. Theor. Phys. 111, 635 (2010).

    Article  ADS  Google Scholar 

  30. S. V. Nikolaev and S. G. Ovchinnikov, J. Exp. Theor. Phys. 114, 118 (2012).

    Article  ADS  Google Scholar 

  31. V. V. Val’kov, V. A. Mitskan, and G. A. Petrakovskii, J. Exp. Theor. Phys. 102, 234 (2006).

  32. V. V. Val’kov and V. A. Mitskan, J. Exp. Theor. Phys. 105, 90 (2007).

    Article  ADS  Google Scholar 

  33. A. S. Krinitsyn, S. V. Nikolaev, and S. G. Ovchinnikov, J. Supercond. Nov. Magn. 27, 955 (2014).

    Article  Google Scholar 

  34. C. Gröber, R. Eder, and W. Hanke, Phys. Rev. B 62, 4336 (2000).

    Article  ADS  Google Scholar 

  35. S. G. Ovchinnikov, Phys. Usp. 40, 966 (1997).

    Article  ADS  Google Scholar 

  36. A. F. Barabanov, A. A. Kovalev, O. V. Urazaev, A. M. Belemuk, and R. Hayn, J. Exp. Theor. Phys. 92, 677 (2001).

    Article  ADS  Google Scholar 

  37. V. V. Val’kov and D. M. Dzebisashvili, J. Exp. Theor. Phys. 100, 608 (2005).

    Article  ADS  Google Scholar 

  38. M. Aichhorn, E. Arrigoni, M. Potthoff, and W. Hanke, Phys. Rev. B 74, 024508 (2006).

    Article  ADS  Google Scholar 

  39. N. M. Plakida and V. S. Oudovenko, J. Exp. Theor. Phys. 104, 230 (2007).

    Article  ADS  Google Scholar 

  40. A. Avella and F. Mancini, Phys. Rev. B 75, 134518 (2007).

    Article  ADS  Google Scholar 

  41. A. Avella, Adv. Cond. Mat. Phys. 2014, 515698 (2014).

    Google Scholar 

  42. E. Pavarini, I. Dasgupta, T. Saha-Dasgupta, et al., Phys. Rev. Lett. 46, 047003 (2001).

    Article  ADS  Google Scholar 

  43. A. Lüscher and A. M. Läuchli, Phys. Rev. B 79, 195102 (2009).

    Article  ADS  Google Scholar 

  44. C. Weber, K. Haule, and G. Kotliar, Phys. Rev. B 82, 125107 (2010).

    Article  ADS  Google Scholar 

  45. E. Z. Kuchinskii, I. A. Nekrasov, and N. S. Pavlov, J. Exp. Theor. Phys. 117, 327 (2013).

    Article  ADS  Google Scholar 

  46. N. P. Armitage, F. Ronning, D. H. Lu, et al., Phys. Rev. Lett. 88, 257001 (2002).

    Article  ADS  Google Scholar 

  47. T. B. Charikova, N. G. Shelushinina, G. I. Harus, et al., Physica C 483, 113 (2012).

    Article  ADS  Google Scholar 

  48. Y. Dagan and R. L. Greene, Phys. Rev. B. 76, 024506 (2007).

    Article  ADS  Google Scholar 

  49. K. Jin, B. Y. Zhu, B. X. Wu, et al., Phys. Rev. B 78, 174521 (2008).

    Article  ADS  Google Scholar 

  50. J. Lin and A. J. Millis, Phys. Rev. B 72, 214506 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Kuz’min.

Additional information

Original Russian Text © V.I. Kuz’min, S.V. Nikolaev, S.G. Ovchinnikov, 2016, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 150, No. 3, pp. 592–601.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuz’min, V.I., Nikolaev, S.V. & Ovchinnikov, S.G. Effect of canted antiferromagnetic order on the electronic structure in the t–J* model within the cluster perturbation theory. J. Exp. Theor. Phys. 123, 511–519 (2016). https://doi.org/10.1134/S1063776116090065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116090065

Navigation