Skip to main content
Log in

Interference stabilization of atoms in a strong laser field for obtaining inversion and lasing in the visible and VUV frequency ranges

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The interference stabilization of Rydberg atoms in strong laser fields is proposed for producing a plasma channel with the inverse population. Inversion between a group of Rydberg levels and low-lying excited levels and the ground state permits amplification and lasing in the IR, visible, and VUV frequency ranges. The lasing and light amplification processes in the plasma channel are analyzed using rate equations and the efficiency of this method is compared with that in the usual method for high harmonic generation during rescattering of electrons by a parent ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Skinner, Science 328, 985 (2010).

    Article  Google Scholar 

  2. K. Meister, S. Ebbinghaus, Y. Xu, et al., Proc. Nat. Acad. Sci. USA 110, 1617 (2013).

    Article  ADS  Google Scholar 

  3. L. V. Titova, A. K. Ayesheshim, A. Golubov, et al., Sci. Rep. 3, 2363 (2013).

    Article  ADS  Google Scholar 

  4. N. K. Grady, J. E. Heyes, D. R. Chowdhury, et al., Science 340, 1304 (2013).

    Article  ADS  Google Scholar 

  5. P. Agostini and L. F. di Mauro, Rep. Prog. Phys. 67, 813 (2004).

    Article  ADS  Google Scholar 

  6. F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).

    Article  ADS  Google Scholar 

  7. P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).

    Article  ADS  Google Scholar 

  8. M. Kreß et al., Nat. Phys. 2, 327 (2006).

    Article  Google Scholar 

  9. V. B. Gildenburg and N. V. Vvedenskii, Phys. Rev. Lett. 98, 245002 (2007).

    Article  ADS  Google Scholar 

  10. S. Akturk, C. D. Amico, M. Franco, A. Couairon, and A. Mysyrowicz, Phys. Rev. A 76, 063819 (2007).

    Article  ADS  Google Scholar 

  11. S. L. Chin and H. L. Xu, Chin. Phys. B 24, 013301 (2015).

    Article  ADS  Google Scholar 

  12. G. Bekefi, Y. L. Hirshfield, and S. C. Brown, Phys. Fluids 4, 173 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  13. F. V. Bunkin, A. E. Kazakov, and M. V. Fedorov, Sov. Phys. Usp. 15, 416 (1972).

    Article  ADS  Google Scholar 

  14. A. V. Bogatskaya and A. M. Popov, JETP Lett. 97, 338 (2013).

    Article  ADS  Google Scholar 

  15. A. V. Bogatskaya, E. A. Volkova, and A. M. Popov, J. Phys. D 47, 185202 (2014).

    Article  ADS  Google Scholar 

  16. A. V. Bogatskaya, E. A. Volkova, A. M. Popov, and I. V. Smetanin, Laser Part. Beams 33, 17 (2015).

    Article  ADS  Google Scholar 

  17. M. V. Fedorov and A. M. Movsesian, J. Phys. B 21, L155 (1988).

    Article  ADS  Google Scholar 

  18. A. V. Bogatskaya and A. M. Popov, Laser Phys. Lett. 12, 045303 (2015).

    Article  ADS  Google Scholar 

  19. A. M. Movsesian and M. V. Fedorov, Sov. Phys. JETP 68, 27 (1989).

    Google Scholar 

  20. M. V. Fedorov, M.-M. Tehranchi, and S. M. Fedorov, J. Phys. B 29, 2907 (1996).

    Article  ADS  Google Scholar 

  21. M. V. Fedorov and O. V. Tikhonova, Phys. Rev. A 58, 1322 (1998).

    Article  ADS  Google Scholar 

  22. M. V. Fedorov, Atomic and Free Electrons in a Strong Light Field (World Scientific, Singapore, 1997).

    Google Scholar 

  23. N. B. Delone, S. P. Goreslavsky, and V. P. Krainov, J. Phys. B: At. Mol. Phys. 16, 2369 (1983).

    Article  ADS  Google Scholar 

  24. N. B. Delone, S. P. Goreslavsky, and V. P. Krainov, J. Phys. B: At. Mol. Phys. 22, 2941 (1989).

    Article  ADS  Google Scholar 

  25. Yu. V. Dubrovskii, M. Yu. Ivanov, and M. V. Fedorov, Sov. Phys. JETP 72, 228 (1991).

    Google Scholar 

  26. M. V. Fedorov, N. P. Poluektov, A. M. Popov, O. V. Tikhonova, V. Yu. Kharin, and E. A. Volkova, IEEE J. Quant. Electron. 18, 42 (2012).

    Article  Google Scholar 

  27. A. Talebpour, C. Y. Chien, and S. L. Chin, J. Phys. B: At. Mol. Opt. Phys. 29, 5725 (1996).

    Article  ADS  Google Scholar 

  28. T. Nubbemeyer, K. Gorling, A. Saenz, U. Eichmann, and W. Sandner, Phys. Rev. Lett. 101, 233001 (2008).

    Article  ADS  Google Scholar 

  29. U. Eichmann, A. Saenz, S. Eilzer, T. Nubbemeyer, and W. Sandner, Phys. Rev. Lett. 110, 203002 (2013).

    Article  ADS  Google Scholar 

  30. U. Eichmann, T. Nubbemeyer, H. Rottke, and W. Sandner, Nature 461, 1261 (2009).

    Article  ADS  Google Scholar 

  31. L. Fechner, N. Camus, A. Krupp, J. Ullrich, Th. Pfeifer, and R. Moshammer, Phys. Rev. A 92, 051403(R) (2015).

    Article  ADS  Google Scholar 

  32. A. M. Popov, O. V. Tikhonova, and E. A. Volkova, Laser Phys. 20, 1028 (2010).

    Article  ADS  Google Scholar 

  33. E. A. Volkova, A. M. Popov, and O. V. Tikhonova, JETP 113, 394 (2011).

    Article  ADS  Google Scholar 

  34. E. A. Volkova, A. M. Popov, and O. V. Tikhonova, J. Mod. Opt. 58, 1195 (2011).

    Article  ADS  Google Scholar 

  35. F. Morales, M. Richter, S. Patchkovskii, and O. Smirnova, Proc. Nat. Acad. Sci. USA 108, 16906 (2011).

    Article  ADS  Google Scholar 

  36. Lv Hang, J. Zhang, W. Zuo, et al., Chin. Phys. B 24, 063303 (2015).

    Article  ADS  Google Scholar 

  37. A. M. Popov, O. V. Tikhonova, and E. A. Volkova, Laser Phys. 21, 1593 (2011).

    Article  ADS  Google Scholar 

  38. A. V. Bogatskaya, E. A. Volkova, and A. M. Popov, Quantum. Electron. 43, 1110 (2013).

    Article  ADS  Google Scholar 

  39. D. Kartashov, S. Ališauskas, A. Pugžlys, M. N. Shneider, and A. Baltuška, J. Phys. B: At. Mol. Opt. Phys. 48, 094016 (2015).

    Article  ADS  Google Scholar 

  40. E. L. Duman and I. P. Shmatov, Sov. Phys. JETP 51, 1061 (1980).

    ADS  Google Scholar 

  41. R. K. Janev and A. A. Mihajlov, Phys. Rev. A 21, 819 (1980).

    Article  ADS  Google Scholar 

  42. A. A. Mihailov and R. K. Janev, J. Phys. B: At. Mol. Phys. 14, 1639 (1981).

    Article  ADS  Google Scholar 

  43. A. L’Huillier, M. Lewenstein, P. Salieres, et al., Phys. Rev. A 48, R3433 (1993).

    Article  ADS  Google Scholar 

  44. M. Lewenstein, Ph. Balcou, M. Yu. Ivanov, et al., Phys. Rev. A 49, 2117 (1994).

    Article  ADS  Google Scholar 

  45. W. Becker, S. Long, and J. K. McEver, Phys. Rev. A 50, 1540 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bogatskaya.

Additional information

Original Russian Text © A.V. Bogatskaya, E.A. Volkova, A.M. Popov, 2016, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 150, No. 3, pp. 445–455.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogatskaya, A.V., Volkova, E.A. & Popov, A.M. Interference stabilization of atoms in a strong laser field for obtaining inversion and lasing in the visible and VUV frequency ranges. J. Exp. Theor. Phys. 123, 382–390 (2016). https://doi.org/10.1134/S106377611609003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611609003X

Navigation