Skip to main content
Log in

Structural features and the microscopic dynamics of the three-component Zr47Cu46Al7 system: Equilibrium melt, supercooled melt, and amorphous alloy

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 01 October 2016

Abstract

The structural and dynamic properties of the three-component Zr47Cu46Al7 system are subjected to a molecular dynamics simulation in the temperature range T = 250–3000 K at a pressure p = 1.0 bar. The temperature dependences of the Wendt–Abraham parameter and the translation order parameter are used to determine the glass transition temperature in the Zr47Cu46Al7 system, which is found to be T c ≈ 750 K. It is found that the bulk amorphous Zr47Cu46Al7 alloy contains localized regions with an ordered atomic structures. Cluster analysis of configuration simulation data reveals the existence of quasi-icosahedral clusters in amorphous metallic Zr–Cu–Al alloys. The spectral densities of time radial distribution functions of the longitudinal ( L(k, ω)) and transverse ( T (k, ω)) fluxes are calculated in a wide wavenumber range in order to study the mechanisms of formation of atomic collective excitations in the Zr47Cu46Al7 system. It was found that a linear combination of three Gaussian functions is sufficient to reproduce the ( L (k, ω)) spectra, whereas at least four Gaussian contributions are necessary to exactly describe the ( T (k, ω)) spectra of the supercooled melt and the amorphous metallic alloy. It is shown that the collective atomic excitations in the equilibrium melt at T = 3000 K and in the amorphous metallic alloy at T = 250 K are characterized by two dispersion acoustic-like branches related with longitudinal and transverse polarizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Inoue, Acta Mater. 48, 279 (2000).

    Article  Google Scholar 

  2. Y. Waseda, The Structure of Non-Crystalline Materials: Liquids and Amorphous Solids (McGraw-Hill, New York, 1980).

    Google Scholar 

  3. N. H. March, Liquid Metals: Concepts and Theory (Cambridge Univ. Press, Cambridge, 1990).

    Book  Google Scholar 

  4. W. H. Wang, Adv. Mater. 21, 4524 (2009).

    Article  Google Scholar 

  5. C. Suryanarayana and A. Inoue, Bulk Metallic Glasses (CRC, Boca Raton, 2010).

    Book  Google Scholar 

  6. R. M. Khusnutdinov, A. V. Mokshin, and I. I. Khadeev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8, 84 (2014).

    Article  Google Scholar 

  7. N. Nishiyama and A. Inoue, Acta Mater. 47, 1487 (1999).

    Article  Google Scholar 

  8. R. M. Khusnutdinov and A. V. Mokshin, Bull. Russ. Acad. Sci.: Phys. 74, 640 (2010).

    Article  Google Scholar 

  9. W. F. Wu and Y. Li, Appl. Phys. Lett. 95, 011906 (2009).

    Article  ADS  Google Scholar 

  10. A. Inoue and W. Zhang, Mater. Trans. 43, 2921 (2002).

    Article  Google Scholar 

  11. Q. Wang, C. Dong, J. B. Qiang, and Y. M. Wang, Mater. Sci. Eng. A 449, 18 (2007).

    Article  Google Scholar 

  12. G. Kumar, T. Ohkubo, T. Mukai, and K. Hono, Scr. Mater. 57, 173 (2007).

    Article  Google Scholar 

  13. D. H. Xu, G. Duan, and W. L. Johnson, Phys. Rev. Lett. 92, 245504 (2004).

    Article  ADS  Google Scholar 

  14. D. B. Miracle, Nature Mater. 3, 697 (2004).

    Article  ADS  Google Scholar 

  15. H. W. Sheng, W. K. Luo, F. M. Alamgir, et al., Nature (London) 439, 419 (2006).

    Article  ADS  Google Scholar 

  16. A. Hirata, L. J. Kang, T. Fujita, et al., Science 341, 376 (2013).

    Article  ADS  Google Scholar 

  17. F. Frank, Proc. R. Soc. London, Math. Phys. Sci. 215, 43 (1952).

    Article  ADS  Google Scholar 

  18. Y. Q. Cheng, E. Ma, and H. W. Sheng, Phys. Rev. Lett. 102, 245501 (2009).

    Article  ADS  Google Scholar 

  19. L. Yang, G. Q. Guo, L. Y. Chen, et al., Scr. Mater. 63, 879 (2010).

    Article  ADS  Google Scholar 

  20. Ch. E. Lekka, J. Alloys Comp. 504, S190 (2010).

    Article  Google Scholar 

  21. Y. Zhang, N. Mattern, and J. Eckert, J. Appl. Phys. 110, 093506 (2011).

    Article  ADS  Google Scholar 

  22. J. Antonowicz, A. Pietnoczka, W. Zalewski, et al., J. Alloys Comp. 509, S34 (2011).

    Article  Google Scholar 

  23. C. C. Wang and C. H. Wong, J. Alloys Comp. 510, 107 (2012).

    Article  Google Scholar 

  24. C. Tang and C. H. Wong, J. Non-Cryst. Sol. 422, 39 (2015).

    Article  ADS  Google Scholar 

  25. S. K. Deb Nath, J. Non-Cryst. Sol. 409, 95 (2015).

    Article  ADS  Google Scholar 

  26. C. Y. Yu, X. J. Liu, G. P. Zheng, et al., J. Alloys Comp. 627, 48 (2015).

    Article  Google Scholar 

  27. C. C. Yuan, X. Shen, J. Cui, et al., Appl. Phys. Lett. 101, 021902 (2012).

    Article  ADS  Google Scholar 

  28. D. K. Belashchenko, Phys. Usp. 56, 1176 (2013).

    Article  ADS  Google Scholar 

  29. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).

    MATH  Google Scholar 

  30. R. M. Khusnutdinoff, A. V. Mokshin, and I. D. Takhaviev, Phys. Solid State 57, 412 (2015).

    Article  ADS  Google Scholar 

  31. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, New York, 2006).

    MATH  Google Scholar 

  32. R. M. Khusnutdinoff and A. V. Mokshin, J. Non-Cryst. Sol. 357, 1677 (2011).

    Article  ADS  Google Scholar 

  33. A. V. Mokshin, A. V. Chvanova, and R. M. Khusnutdinoff, Theor. Math. Phys. 171, 541 (2012).

    Article  MathSciNet  Google Scholar 

  34. Y. Zhang, N. Mattern, and J. Eckert, J. Alloys Comp. 514, 141 (2012).

    Article  Google Scholar 

  35. G. N. Sarkisov, Phys. Usp. 45, 597 (2002).

    Article  ADS  Google Scholar 

  36. N. M. Chtchelkatchev, B. A. Klumov, R. E. Ryltsev, et al., arXiv:1512.00989.

  37. H. Vidberg and J. Serene, J. Low Temp. Phys. 29, 179 (1977).

    Article  ADS  Google Scholar 

  38. N. M. Chtchelkatchev and R. E. Ryltsev, JETP Lett. 102, 643 (2015).

    Article  ADS  Google Scholar 

  39. H. J. Raveche, R. D. Mountain, and W. B. Streett, J. Chem. Phys. 61, 1970 (1974).

    Article  ADS  Google Scholar 

  40. H. R. Wendt and F. F. Abraham, Phys. Rev. Lett. 41, 1244 (1978).

    Article  ADS  Google Scholar 

  41. R. M. Khusnutdinoff, A. V. Mokshin, and R. M. Yul’met’ev, J. Exp. Theor. Phys. 108, 417 (2009).

    Article  ADS  Google Scholar 

  42. H. Tanaka, Phys. Rev. Lett. 80, 5750 (1998).

    Article  ADS  Google Scholar 

  43. A. V. Mokshin, R. M. Yul’met’ev, R. M. Khusnutdinoff, and P. Hanggi, J. Exp. Theor. Phys. 103, 841 (2006).

    Article  ADS  Google Scholar 

  44. S. A. Khrapak, B. A. Klumov, P. Huber, et al., Phys. Rev. Lett. 106, 205001 (2011).

    Article  ADS  Google Scholar 

  45. S. A. Khrapak, B. A. Klumov, P. Huber, et al., Phys. Rev. E 85, 066407 (2012).

    Article  ADS  Google Scholar 

  46. B. A. Klumov, JETP Lett. 98, 259 (2013).

    Article  ADS  Google Scholar 

  47. Yu. Fomin, V. N. Ryzhov, B. A. Klumov, and E. N. Tsiok, J. Chem. Phys. 141, 034508 (2014).

    Article  ADS  Google Scholar 

  48. R. E. Ryltsev and N. M. Chtchelkatchev, Phys. Rev. E 88, 052101 (2013).

    Article  ADS  Google Scholar 

  49. R. M. Khusnutdinoff, Colloid. J. 75, 726 (2013).

    Article  Google Scholar 

  50. U. Balucani and M. Zoppi, Dynamics of the Liquid State (Clarendon, Oxford, 1994).

    Google Scholar 

  51. J. Zemp, M. Celino, B. Schönfeld, and J. F. Löffler, Phys. Rev. B 90, 144108 (2014).

    Article  ADS  Google Scholar 

  52. P. J. Steinhardt, D. Nelson, and M. Ronchetti, Phys. Rev. Lett. 47, 1297 (1981)

    Article  ADS  Google Scholar 

  53. P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B 28, 784 (1983).

    Article  ADS  Google Scholar 

  54. A. C. Mitus and A. Z. Patashinskii, Phys. Lett. A 87, 179 (1982)

    Article  ADS  Google Scholar 

  55. A. C. Mitus and A. Z. Patashinskii, Phys. Lett. A 88, 31 (1983).

    Article  ADS  Google Scholar 

  56. P. R. tenWolde, M. J. Ruiz-Montero, and D. Frenkel, J. Chem. Phys. 104, 9932 (1996).

    Article  ADS  Google Scholar 

  57. S. Torquato, T. M. Truskett, and P. G. Debenedetti, Phys. Rev. Lett. 84, 2064 (2000).

    Article  ADS  Google Scholar 

  58. U. Gasser, E. R. Weeks, A. Schofield, et al., Science 292, 5515 (2001).

    Article  Google Scholar 

  59. V. Luchnikov, A. Gervois, P. Richard, et al., J. Mol. Liq. 96, 185 (2002).

    Article  Google Scholar 

  60. J. R. Errington, P. G. Debenedetti, and T. Torquato, J. Chem. Phys. 118, 2256 (2003).

    Article  ADS  Google Scholar 

  61. A. V. Mokshin and J.-L. Barrat, Phys. Rev. E 77, 021505 (2008).

    Article  ADS  Google Scholar 

  62. A. V. Mokshin and J.-L. Barrat, J. Chem. Phys. 130, 034502 (2009).

    Article  ADS  Google Scholar 

  63. A. V. Mokshin, B. N. Galimzyanov, and J.-L. Barrat, Phys. Rev. E 87, 062307 (2013).

    Article  ADS  Google Scholar 

  64. B. A. Klumov, Phys. Usp. 53, 1053 (2010).

    Article  ADS  Google Scholar 

  65. T. Kawasaki and H. Tanaka, J. Phys.: Condens. Matter 22, 232102 (2010).

    ADS  Google Scholar 

  66. B. A. Klumov, S. A. Khrapak, and G. E. Morfill, Phys. Rev. B 83, 184105 (2011).

    Article  ADS  Google Scholar 

  67. A. V. Mokshin, R. M. Khusnutdinoff, A. G. Novikov, N. M. Blagoveshchenskii, and A. V. Puchkov, J. Exp. Theor. Phys. 121, 828 (2015).

    Article  ADS  Google Scholar 

  68. R. M. Khusnutdinoff and A. V. Mokshin, Physica A 391, 2842 (2012).

    Article  ADS  Google Scholar 

  69. W. Montfrooij and I. de Schepper, Excitations in Simple Liquids, Liquid Metals and Superfluids (Oxford Univ. Press, New York, 2010).

    Google Scholar 

  70. R. M. Khusnutdinoff and A. V. Mokshin, JETP Lett. 100, 39 (2014).

    Article  ADS  Google Scholar 

  71. D. Pines, Elementary Excitations in Solids (Benjamin, New York, 1963).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Khusnutdinoff.

Additional information

Original Russian Text © R.M. Khusnutdinoff, A.V. Mokshin, B.A. Klumov, R.E. Ryltsev, N.M. Chtchelkatchev, 2016, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 150, No. 2, pp. 306–319.

An erratum to this article is available at http://dx.doi.org/10.1134/S1063776116140028.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khusnutdinoff, R.M., Mokshin, A.V., Klumov, B.A. et al. Structural features and the microscopic dynamics of the three-component Zr47Cu46Al7 system: Equilibrium melt, supercooled melt, and amorphous alloy. J. Exp. Theor. Phys. 123, 265–276 (2016). https://doi.org/10.1134/S1063776116060042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116060042

Navigation