Skip to main content
Log in

Instability analysis of a cylindrical stellar object in Brans–Dicke gravity

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

This paper investigates instability ranges of a cylindrically symmetric collapsing cosmic filamentary structure in the Brans–Dicke theory of gravity. For this purpose, we use a perturbating approach to the modified field equations as well as dynamic equations and construct a collapse equation. The collapse equation with an adiabatic index (Γ) is used to explore the instability ranges of both isotropic and anisotropic fluid in Newtonian and post-Newtonian approximations. It turns out that the instability ranges depend on the dynamic variables of collapsing filaments. We conclude that the system always remains unstable for 0 < Γ < 1, while Γ > 1 provides instability only in a special case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Riess et al., Astrophys. J. 116, 1009 (1998)

    Google Scholar 

  2. S. Perlmutter et al., Nature 391, 51 (1998)

    Article  ADS  Google Scholar 

  3. C. L. Bennett et al., Astrophys. J. Suppl. 148, 1 (2003)

    Article  ADS  Google Scholar 

  4. M. Tegmark et al., Phys. Rev. D 69, 03501 (2004).

    Article  Google Scholar 

  5. N. Banerjee and D. Pavon, Phys. Rev. D 63, 043504 (2001)

    Article  ADS  Google Scholar 

  6. M. Sharif and S. Waheed, Europ. Phys. J. C 72, 1876 (2012)

    Article  ADS  Google Scholar 

  7. J. Phys. Soc. Jpn. 81, 114901 (2012).

  8. P. A. M. Dirac, Proc. R. Soc. London A 165, 199 (1938)

    Article  ADS  Google Scholar 

  9. C. H. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  10. S. Santos and R. Gregory, Ann. Phys. 258, 111 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  11. S. Sen and T. R. Seshadri, Int. J. Mod. Phys. D 12, 445 (2003).

    Article  ADS  Google Scholar 

  12. B. I. L. Bertotti and P. Tortora, Nature 425, 374 (2003)

    Article  ADS  Google Scholar 

  13. A. D. Felice et al., Phys. Rev. D 74, 103005 (2006).

    Article  ADS  Google Scholar 

  14. S. Chandrasekhar, Astrophys. J. 140, 417 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  15. L. Herrera et al., Mon. Not. R. Astron. Soc. 237, 257 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  16. R. Chan et al., Mon. Not. R. Astron. Soc. 239, 91 (1989)

    Article  ADS  Google Scholar 

  17. R. Chan, L. Herrera, and N. O. Santos, Mon. Not. R. Astron. Soc. 265, 533 (1993).

    Article  ADS  Google Scholar 

  18. M. Sharif and M. Azam, J. Cosmol. Astropart. Phys. 02, 043 (2012).

    Article  ADS  Google Scholar 

  19. M. Sharif and Z. Yousaf, Astrophys. Space Sci. 352, 321 (2014)

    Article  ADS  Google Scholar 

  20. M. Sharif and R. Manzoor, Mod. Phys. Lett. A 29, 1450192 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  21. Y. Nutku, Astrophys. J. 155, 999 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  22. O. J. Kwon et al., Phys. Rev. D 34, 333 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  23. M. Sharif and H. R. Kausar, J. Cosmol. Astropart. Phys. 07, 022 (2011).

    Article  ADS  Google Scholar 

  24. M. Sharif and Z. Yousaf, Phys. Rev. D 88, 024020 (2013).

    Article  ADS  Google Scholar 

  25. M. Sharif and S. Rani, Mon. Not. R. Astron. Soc. 440, 2255 (2014).

    Article  ADS  Google Scholar 

  26. M. Sharif and R. Manzoor, Astrophys. Space Sci. 354, 497 (2014).

    ADS  Google Scholar 

  27. P. C. Myers, Astrophys. J. 764, 140 (2013).

    Article  ADS  Google Scholar 

  28. J. M. Colberg et al., Mon. Not. R. Astron. Soc. 359, 272 (2005).

    Article  ADS  Google Scholar 

  29. A. Schneider and B. Moore, Mon. Not. R. Astron. Soc. 415, 1569 (2011)

    Article  ADS  Google Scholar 

  30. P. A. R. Ade et al., Astron. Astrophys. 550, A134 (2013).

    Article  Google Scholar 

  31. J. Ostriker, Astrophys. J. 140, 1056 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  32. P. C. Breysse et al., Mon. Not. R. Astron. Soc. 437, 2675 (2014).

    Article  ADS  Google Scholar 

  33. S. W. Hawking, Commun. Math. Phys. 25, 167 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  34. H. Chao-Guang, Acta Phys. Sin. 4, 617 (1995).

    ADS  Google Scholar 

  35. K. S. Thorne, Phys. Rev. B 138, 251 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  36. B. K. Harrison et al., Gravitation Theory and Gravitational Collapse (Univ. Chicago Press, Chicago, 1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sharif.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, M., Manzoor, R. Instability analysis of a cylindrical stellar object in Brans–Dicke gravity. J. Exp. Theor. Phys. 122, 849–858 (2016). https://doi.org/10.1134/S1063776116040075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116040075

Navigation