Skip to main content
Log in

Theory of multinonlinear media and its application to the soliton processes in ferrite–ferroelectric structures

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A theory is developed to describe the wave processes that occur in waveguide media having several types of nonlinearity, specifically, multinonlinear media. It is shown that the nonlinear Schrödinger equation can be used to describe the general wave process that occurs in such media. The competition between the electric wave nonlinearity and the magnetic wave nonlinearity in a layered multinonlinear ferrite–ferroelectric structure is found to change a total repulsive nonlinearity into a total attractive nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Remoissenet, Waves Called Solitons: Concepts and Experiments (Springer Science and Business Media, 2013).

    MATH  Google Scholar 

  2. N. M. Ryskin and D. I. Trubetskov, Nonlinear Waves (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  3. S. P. Kuznetsov, Dynamical Chaos (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

  4. A. Scott, Nonlinear Science (Oxford Univ. Press, Oxford, 2003).

    MATH  Google Scholar 

  5. N. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman and Hall, London, 1997).

    MATH  Google Scholar 

  6. Z. G. Chen, M. Segev, and D. N. Christodoulides, Rep. Prog. Phys. 75, 21 (2012).

    Google Scholar 

  7. Y. S. Kivshar and G. P. Agrawal, Optical Solitons. From Fibers to Photonic Crystals (Academic, New York, 2003).

    Google Scholar 

  8. T. Herr, V. Brasch, J. D. Jost, et al., Nature Photon. 8, 145 (2014).

    Article  ADS  Google Scholar 

  9. D. J. Frantzeskakis, J. Phys. A: Math. Theor. 43, 213001 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  10. C. Becker, S. Stellmer, P. Soltan-Panahi, et al., Nature Phys. 4, 496 (2008).

    Article  ADS  Google Scholar 

  11. B. A. Kalinikos and A. B. Ustinov, in Solid State Physics, Ed. by A. Hoffmann and M. Wu (Academic Press, Burlington, 2013), Vol. 64, p. 193.

  12. C. A. F. Vaz, J. Phys.: Condens. Matter 24, 333201 (2012).

    Google Scholar 

  13. M. A. Cherkasskii and B. A. Kalinikos, Tech. Phys. Lett. 39, 182 (2013).

    Article  ADS  Google Scholar 

  14. M. A. Cherkasskii and B. A. Kalinikos, JETP Lett. 97, 611 (2013).

    Article  ADS  Google Scholar 

  15. G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics (Oxford Univ. Press, Oxford, 2008).

    MATH  Google Scholar 

  16. M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer Science and Business Media, New York, 2013).

    MATH  Google Scholar 

  17. S. P. Kuznetsov, Phys. Usp. 54, 119 (2011).

    Article  ADS  Google Scholar 

  18. T. V. Dmitrieva and N. M. Ryskin, J. Exp. Theor. Phys. 100, 208 (2005).

    Article  ADS  Google Scholar 

  19. A. A. Balyakin and N. M. Ryskin, Tech. Phys. Lett. 30, 175 (2004).

    Article  ADS  Google Scholar 

  20. V. E. Zakharov and L. A. Ostrovsky, Physica D 238, 540 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  21. M. Wu, B. A. Kalinikos, and C. E. Patton, Phys. Rev. Lett. 93, 157207 (2004).

    Article  ADS  Google Scholar 

  22. C. S. Tsai, D. Young, and S. A. Nikitov, J. Appl. Phys. 84, 1670 (1998).

    Article  ADS  Google Scholar 

  23. J. W. Boyle, S. A. Nikitov, A. D. Boardman, et al., J. Magn. Magn. Mater. 173, 241 (1997).

    Article  ADS  Google Scholar 

  24. Yu. Fetisov and A. Makovkin, Tech. Phys. 46, 84 (2001).

    Article  Google Scholar 

  25. V. I. Karpman, Non-Linear Waves in Dispersive Media (Pergamon, Oxford, 1975; Nauka, Moscow, 1973).

    Google Scholar 

  26. A. K. Zvezdin and A. F. Popkov, Sov. Phys. JETP 57, 350 (1983).

    Google Scholar 

  27. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, London, 1996).

    MATH  Google Scholar 

  28. Physics of Ferroelectric Phenomena, Ed. by G. A. Smolenskii (Nauka, Leningrad, 1985) [in Russian].

  29. A. A. Semenov, S. F. Karmanenko, V. E. Demidov, et al., Appl. Phys. Lett. 88, 033503 (2006).

    Article  ADS  Google Scholar 

  30. A. B. Ustinov, P. I. Kolkov, A. A. Nikitin, B. A. Kalinikos, Y. K. Fetisov, and G. Srinivasan, Tech. Phys. 56, 821 (2011).

    Article  Google Scholar 

  31. V. E. Demidov, B. A. Kalinikos, and P. Edenhofer, J. Appl. Phys. 91, 10007 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Cherkasskii.

Additional information

Original Russian Text © M.A. Cherkasskii, A.A. Nikitin, B.A. Kalinikos, 2016, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 149, No. 4, pp. 839–847.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherkasskii, M.A., Nikitin, A.A. & Kalinikos, B.A. Theory of multinonlinear media and its application to the soliton processes in ferrite–ferroelectric structures. J. Exp. Theor. Phys. 122, 727–733 (2016). https://doi.org/10.1134/S106377611604004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611604004X

Keywords

Navigation