Skip to main content
Log in

Spin radiative corrections to the radiation probability and power in classical and quantum electrodynamics

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Spin radiative effects in a one-particle sector of QED have a dual nature and can be understood with the Frenkel classical rotating-electron model. In the region of parameters under study γ 2 ≫ 1 (γ 2 = 1 + p 2/m 2) and χ ≪ 1 (χ = \({{\sqrt {{{\left( {e{F_{\mu v}}{p_v}} \right)}^2}} } \mathord{\left/ {\vphantom {{\sqrt {{{\left( {e{F_{\mu v}}{p_v}} \right)}^2}} } {{m^3}}}} \right. \kern-\nulldelimiterspace} {{m^3}}}\)), the imaginary part of the mass shift and radiation power contain two types of spin contributions. The contributions of the first type are related to the intrinsic magnetic moment of a fermion representing an additional source of electromagnetic radiation. The contributions of the second type have the opposite sign and are caused by a small change in the electron acceleration appearing due to the Frenkel addition to the particle mass. Contributions of the second type dominate, which explains the “wrong” sign of total spin corrections. We show that not only the sign but also the values of coefficients can be explained with specified accuracy using classical electrodynamics if corrections to the mass shift (action) and radiation power are calculated in canonical variables, i.e., for fixed velocity and momentum values, respectively. The results can be treated as a demonstration of the correspondence principle in the field of radiative spin effects, in addition to correspondence between classical and quantum theories at the tree (in the external filed) level. For a e ≡ (g–2)/2 ≲ χ ≪ 1, equations of the Frenkel model lead to generalization of the system of Lorentz–BMT (Bargmann–Michel–Telegdi) equations taking into account the Frenkel addition to mass. Some features of experimental observations of the spin light are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Sokolov and I. M. Ternov, The Relativistic Electron (Nauka, Moscow, 1983) [in Russian].

    MATH  Google Scholar 

  2. J. Schwinger, Phys. Rev. 75, 1912 (1949).

    Article  ADS  MathSciNet  Google Scholar 

  3. A. E. Bondar and E. L. Saldin, Nucl. Instrum. Methods Phys. Res. 195, 577 (1982).

    Article  ADS  Google Scholar 

  4. B. A. Bordovitsyn, I. M. Ternov, and V. G. Bagrov, Phys. Usp. 38, 1037 (1995).

    Article  ADS  Google Scholar 

  5. A. A. Sokolov and I. M. Ternov, Sov. Phys. Dokl. 8, 90 (1963).

    Google Scholar 

  6. I. M. Ternov, V. G. Bagrov, and R. A. Rzaev, Sov. Phys. JETP 19, 255 (1964).

    Google Scholar 

  7. A. I. Nikishov and V. I. Ritus, Sov. Phys. JETP 19, 529 (1964).

    MathSciNet  Google Scholar 

  8. V. I. Ritus, Sov. Phys. JETP 30, 1181 (1969).

    ADS  Google Scholar 

  9. V. N. Baier, Sov. Phys. Usp. 14, 695 (1971).

    Article  ADS  Google Scholar 

  10. W. Tsai and A. Yildiz, Phys. Rev. D 8, 3446 (1973).

    Article  ADS  Google Scholar 

  11. J. Schwinger and W. Tsai, Phys. Rev. D 9, 1843 (1974).

    Article  ADS  Google Scholar 

  12. Ya. S. Derben’ev and A. M. Kondratenko, Sov. Phys. JETP 37, 968 (1973).

    ADS  Google Scholar 

  13. J. D. Jackson, Rev. Mod. Phys. 48, 417 (1976).

    Article  ADS  Google Scholar 

  14. J. S. Bell and J. M. Leinaas, Nucl. Phys. B 212, 131 (1983).

    Article  ADS  Google Scholar 

  15. J. S. Bell and J. M. Leinaas, Nucl. Phys. B 284, 488 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  16. W. G. Unruh, in Quantum Aspects of Beam Physics, Ed. by Pisin Chen (World Scientific, Singapore, 1999), p. 21.

  17. J. M. Leinaas, arXiv: hep-th/0101054.

  18. S. R. Mane, Yu. M. Shatunov, and K. Yokoya, Rep. Progr. Phys. 68, 1997 (2005).

    Article  ADS  Google Scholar 

  19. S. A. Belomestnykh, A. E. Bondar, M. N. Yegorychev, et al., Nucl. Instrum. Methods Phys. Res. 227, 173 (1984).

    Article  ADS  Google Scholar 

  20. I. M. Ternov, Introduction to the Spin Physics of Relativistic Particles (Mosk. Gos. Univ., Moscow, 1997), p. 1 [in Russian].

    Google Scholar 

  21. V. Bargmann, L. Michel, and V. L. Telegdi, Phys. Rev. Lett. 2, 435 (1959).

    Article  ADS  Google Scholar 

  22. Radiation Theory of Relativistic Particle, Ed. by V. A. Bordovitsyn (Fizmatlit, Moscow, 2002), p. 1 [in Russian].

  23. S. L. Lebedev, Int. J. Mod. Phys. A 29, 1450186 (2014).

    Article  ADS  Google Scholar 

  24. J. R. Ellis, J. Math. Phys. 7, 1185 (1966).

    Article  ADS  Google Scholar 

  25. S. R. de Groot and L. G. Sattorp, Foundations of Electrodynamics (North-Holland, Amsterdam, 1972), p. 1.

    Google Scholar 

  26. C. Teitelboim, D. Villaroel, and Ch. G. van Weert, Riv. Nuovo Cim. 3, 1 (1980).

    Article  Google Scholar 

  27. V. N. Baier, V. M. Katkov, and V. M. Strakhovenko, Sov. Phys. Dokl. 16, 230 (1971).

    ADS  Google Scholar 

  28. S. L. Lebedev, Phys. At. Nucl. 74, 413 (2011).

    Article  Google Scholar 

  29. V. I. Ritus, Sov. Phys. JETP 53, 659 (1981).

    Google Scholar 

  30. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1973; Pergamon, Oxford, 1975), p. 1.

    Chapter  Google Scholar 

  31. J. Frenkel, Zs. Phys. 37, 243 (1926).

    Article  ADS  Google Scholar 

  32. I. M. Ternov and V. A. Bordovitsyn, Sov. Phys. Usp. 23, 679 (1980).

    Article  ADS  Google Scholar 

  33. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics (Nauka, Moscow, 1989; Pergamon, Oxford, 1982).

    Google Scholar 

  34. V. I. Ritus, Tr. FIAN 168, 52 (1986).

    Google Scholar 

  35. S. I. Rubinov and J. B. Keller, Phys. Rev. 131, 2789 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  36. K. Rafanelli and R. Schiller, Phys. Rev. B 135, 279 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  37. J. Esberg and U. I. Uggerhoj, J. Phys: Conf. Ser. 198, 012007 (2009).

    ADS  Google Scholar 

  38. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics (Nauka, Moscow, 1982; Pergamon Press, New York, 1988).

    Google Scholar 

  39. J. D. Jackson, Classical Electrodynamics (Wiley, Hoboken, NJ, USA, 1999), p. 1.

    MATH  Google Scholar 

  40. S. L. Lebedev, in Proceedings of the International Conference on I. Ya. Pomeranchuk and Physics at the Turn of Centuries, Ed. by A. Berkov, N. Narozhny, and L. Okun (World Scientific, Singapore, 2003), p. 440; arXiv: hepth/0508166.

  41. F. A. Berezin and M. S. Marinov, Ann. Phys. 104, 336 (1977).

    Article  ADS  Google Scholar 

  42. H. C. Corben, Phys. Rev. 121, 1833 (1961).

    Article  ADS  Google Scholar 

  43. R. Schiller, Phys. Rev. 128, 1402 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  44. A. O. Barut, Electrodynamics and Classical Theory of Fields and Particles (Dover, New York, 1964), p. 1.

    Google Scholar 

  45. C. A. P. Galvao and C. Teitelboim, J. Math. Phys. 21, 1863 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  46. S. L. Lyakhovich, A. Yu. Segal, and A. A. Sharapov, Phys. Rev. D 54, 5223 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  47. C. Itzykson and J. B. Zuber, Introduction to Quantum Field Theory (McGraw-Hill, New York, 1980; Mir, Moscow, 1984), vol. 1.

    Google Scholar 

  48. S. L. Lebedev, Sov. J. Nucl. Phys. 42, 880 (1985).

    Google Scholar 

  49. F. A. Berezin and M. S. Marinov, JETP Lett. 21, 320 (1975).

    ADS  Google Scholar 

  50. A. Frydryszak, arXiv: hep-th/9601020.

  51. V. G. Bagrov and V. A. Bordovitsyn, Izv. Vyssh. Uchebn. Zaved., Ser. Fiz., No. 2, 67 (1980).

    Google Scholar 

  52. K. Heinemann, arXiv: physics/9611001.

  53. H. J. Bhabha and H. C. Corben, Proc. R. Soc. A 178, 273 (1941).

    Article  ADS  MathSciNet  Google Scholar 

  54. E. G. P. Rowe and G. T. Rowe, Phys. Rep. 149, 287 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  55. S. L. Lebedev, JETP Lett. 101, 633 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Lebedev.

Additional information

Original Russian Text © S.L. Lebedev, 2016, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 149, No. 4, pp. 756–769.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, S.L. Spin radiative corrections to the radiation probability and power in classical and quantum electrodynamics. J. Exp. Theor. Phys. 122, 650–662 (2016). https://doi.org/10.1134/S1063776116020084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116020084

Keywords

Navigation