Skip to main content
Log in

Structure and phonon spectrum of a submonolayer Ni film on the surface of Cu(100)

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The equilibrium atomic structure and the phonon spectra of a submonolayer (θ = 0.5 monolayer) Ni film deposited on the surface of Cu(100) are calculated using the potentials obtained by the embedded atom method. We consider atomic relaxation, the vibrational state density distribution on Ni and substrate atoms, and polarization of vibrational modes. Variation of the phonon spectrum upon segregation of Cu atoms on the film surface is considered. It is shown that mixing of vibrations of Ni adatoms with vibrations of substrate atoms occurs in the entire frequency range, leading to a frequency shift of the vibrational modes of the substrate and to the occurrence of new vibrational states atypical of a clean surface. The Cu(100)–c(2 × 2)–Ni structure is dynamically stabler when placed in the subsurface layer of the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. H. Upton, T. Miller, and T.-C. Chiang, Appl. Phys. Lett. 85, 1235 (2004).

    Article  ADS  Google Scholar 

  2. I. Yu. Sklyadneva, R. Heid, K.-P. Bohnen, P. M. Echenigue, and E. V. Chulkov, Phys. Rev. B 87, 085440 (2013).

    Article  ADS  Google Scholar 

  3. G. G. Rusina, S. D. Borisova, and E. V. Chulkov, JETP Lett. 100, 237 (2014).

    Article  ADS  Google Scholar 

  4. T. C. Chiang, AAPPS Bull. 18, 2 (2008).

    Google Scholar 

  5. W. Platow, U. Bovensiepen, P. Poulopoulos, M. Farle, K. Baberschke, L. Hammer, S. Walter, S. Müller, and K. Heinz, Phys. Rev. B 59, 12641 (1999).

    Article  ADS  Google Scholar 

  6. V. K. Kumikov and Kh. B. Khokonov, J. Appl. Phys. 54, 1346 (1983).

    Article  ADS  Google Scholar 

  7. B. Hernnas, M. Karolewski, H. Tillborg, A. Nilsson, and N. Martensson, Surf. Sci. 302, 64 (1994).

    Article  ADS  Google Scholar 

  8. S. M. Foiles, Phys. Rev. B 32, 7685 (1985).

    Article  ADS  Google Scholar 

  9. S. H. Kim, K. S. Lee, H. G. Min, J. Seo, S. C. Hong, T. H. Rho, and J.-S. Kim, Phys. Rev. B 55, 7904 (1997).

    Article  ADS  Google Scholar 

  10. B.-S. Kang, J.-S. Chung, S.-K. Oh, and H.-J. Kang, J. Magn. Magn. Mater. 241, 415 (2002).

    Article  ADS  Google Scholar 

  11. S. Pons, P. Mallet, L. Magaud, and J.-Y. Veuillen, Surf. Sci. 511, 449 (2002).

    Article  ADS  Google Scholar 

  12. Z. Yang and R. Wu, Surf. Sci. Lett. 496, L23 (2002).

    Article  ADS  Google Scholar 

  13. H. Huang, X.-Y. Zhu, and J. Hermanson, Phys. Rev. B 29, 2270 (1984).

    Article  ADS  Google Scholar 

  14. J. Shen, J. Giergiel, and J. Kirschner, Phys. Rev. B 52, 8454 (1995).

    Article  ADS  Google Scholar 

  15. C. Stuhlmann and H. Ibach, Surf. Sci. 219, 117 (1989).

    Article  ADS  Google Scholar 

  16. Y. Chen, S. Y. Tong, J.-S. Kim, M. H. Mohamed, and L. L. Kesmodel, Phys. Rev. B 43, 6788 (1991).

    Article  ADS  Google Scholar 

  17. J. Braun, P. Ruggerone, G. Zhang, P. Toennies, and G. Benedek, Phys. Rev. B 79, 205423 (2009).

    Article  ADS  Google Scholar 

  18. G. G. Rusina and E. V. Chulkov, Russ. Chem. Rev. 82, 483 (2013).

    Article  ADS  Google Scholar 

  19. Y. Chen, Z. Q. Wu, J. M. Yao, and S. Y. Tong, Phys. Rev. B 39, 5617 (1989).

    Article  ADS  Google Scholar 

  20. M. Rocca, S. Lehwald, H. Ibach, and T. S. Rahman, Surf. Sci. 171, 632 (1986).

    Article  ADS  Google Scholar 

  21. I. Yu. Sklyadneva, G. G. Rusina, and E. V. Chulkov, Surf. Sci. 433–435, 517 (1999).

    Article  Google Scholar 

  22. S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B 33, 7983 (1986).

    Article  ADS  Google Scholar 

  23. L. Verlet, Phys. Rev. 159, 98 (1967).

    Article  ADS  Google Scholar 

  24. R. A. Johnson, Phys. Rev. B 39, 12554 (1989).

    Article  ADS  Google Scholar 

  25. R. D. Diehl and R. McGrath, J. Phys.: Condens. Matter 9, 951 (1997).

    ADS  Google Scholar 

  26. H. L. Davis and J. R. Noonan, J. Vac. Sci. Technol. 20, 842 (1982).

    Article  ADS  Google Scholar 

  27. R. Heid and K.-P. Bohnen, Phys. Rep. 387, 151 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  28. G. Benedek, J. Ellis, N. S. Luo, A. Reichmuth, P. Ruggerone, and J. P. Tonnies, Phys. Rev. B 48, 4917 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Borisova.

Additional information

Original Russian Text © G.G. Rusina, S.D. Borisova, E.V. Chulkov, 2016, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 149, No. 2, pp. 326–332.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusina, G.G., Borisova, S.D. & Chulkov, E.V. Structure and phonon spectrum of a submonolayer Ni film on the surface of Cu(100). J. Exp. Theor. Phys. 122, 283–288 (2016). https://doi.org/10.1134/S1063776116010179

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116010179

Keywords

Navigation