Skip to main content
Log in

Thermodynamic product formula for a Taub–NUT black hole

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We derive various important thermodynamic relations of the inner and outer horizons in the background of the Taub–NUT (Newman–Unti–Tamburino) black hole in four-dimensional Lorentzian geometry. We compare these properties with the properties of the Reissner–Nordström black hole. We compute the area product, area sum, area subtraction, and area division of black hole horizons. We show that they all are not universal quantities. Based on these relations, we compute the area bound of all horizons. From the area bound, we derive an entropy bound and an irreducible mass bound for both horizons. We further study the stability of such black holes by computing the specific heat for both horizons. It is shown that due to the negative specific heat, the black hole is thermodynamically unstable. All these calculations might be helpful in understanding the nature of the black hole entropy (both interior and exterior) at the microscopic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ansorg and J. Hennig, Phys. Rev. Lett. 102, 221102 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  2. M. Cvetic, G. W. Gibbons, and C. N. Pope, Phys. Rev. Lett. 106, 121301 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  3. J. D. Bekenstein, Lett. Nuovo Cim. 4, 737 (1972).

    Article  ADS  Google Scholar 

  4. A. Strominger and C. Vapa, Phys. Lett. B 379, 99 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Guica, T. Hartman, W. Song, and A. Strominger, Phys. Rev. D 80, 124008 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Curir, Nuovo Cim. B 51, 262 (1979).

    Article  ADS  Google Scholar 

  7. F. Larsen, Phys. Rev. D 56, 1005 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  8. S. Chandrashekar, The Mathematical Theory of Black Holes (Clarendon, Oxford, 1983).

    Google Scholar 

  9. D. Lynden-Bell and M. Nouri-Zonoz, Rev. Mod. Phys. 70, 447 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  10. C. W. Misner and A. H. Taub, Sov. Phys. JETP 28, 122 (1968).

    ADS  Google Scholar 

  11. J. G. Miller, M. D. Kruskal, and B. B. Godfrey, Phys. Rev. D 4, 2945 (1971).

    Article  ADS  MathSciNet  Google Scholar 

  12. E. T. Newman, L. Tamburino, and T. Unti, J. Math. Phys. 4, 7 (1963).

    Google Scholar 

  13. S. Ramaswamy and A. Sen, J. Math. Phys. 22, 2612 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  14. C. W. Misner, J. Math. Phys. 4, 924 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  15. P. Pradhan, arXiv:1408.2973 [gr-qc].

  16. J. M. Bardeen, B. Carter, and S. W. Hawking, Comm. Math. Phys. 31, 161 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  17. A. Castro and M. J. Rodriguez, Phys. Rev. D 86, 024008 (2012).

    Article  ADS  Google Scholar 

  18. B. Chen, S. X. Liu, and J. J. Zhang, J. High Energy Phys. 1211, 017 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  19. D. Christodoulou, Phys. Rev. Lett. 25, 1596 (1970).

    Article  ADS  Google Scholar 

  20. R. Penrose, Ann. N.Y. Acad. Sci. 224, 125 (1973).

    Article  ADS  Google Scholar 

  21. W. Xu, J. Wang, and X. Meng, Phys. Lett. B 746, 53 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  22. P. Pradhan, Phys. Lett. B 747, 64 (2015).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Pradhan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, P. Thermodynamic product formula for a Taub–NUT black hole. J. Exp. Theor. Phys. 122, 113–117 (2016). https://doi.org/10.1134/S1063776116010088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116010088

Keywords

Navigation