Skip to main content
Log in

Room-temperature ferromagnetism in cerium dioxide powders

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Room-temperature ferromagnetism is detected in a CeO2 powder with a grain size of about 35 nm and a low (<0.1 at %) manganese and iron content. The ferromagnetism in a CeO2 sample with a submicron crystallite size and the same manganese and iron impurity content is lower than in the nanocrystalline sample by an order of magnitude. Apart from ferromagnetism, both samples exhibit EPR spectra of localized paramagnetic centers, the concentration of which is lower than 0.01 at %. A comparative analysis of these results shows that the F-center exchange (FCE) mechanism cannot cause ferromagnetism. This conclusion agrees with the charge-transfer ferromagnetism model proposed recently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Trovarelli, Catalysis by Ceria and Related Materials (Imperial College Press, London, 2002).

    Google Scholar 

  2. J. Kašpar, P. Fornasiero, and M. Graziani, Catal. Today 50, 285 (1999).

    Article  Google Scholar 

  3. E. P. Murray, T. Tsai, and S. A. Barnett, Nature (London) 400, 649 (1999).

    Article  ADS  Google Scholar 

  4. A. Corma, P. Atienzar, H. Garcia, and J.-Y. ChaneChing, Nat. Mater. 3, 394 (2004).

    Article  ADS  Google Scholar 

  5. M. Das, S. Patil, N. Bhargava, J. F. Kang, L. M. Riedel, S. Seal, and J. J. Hickman, Biomaterials 28, 1918 (2007).

    Article  Google Scholar 

  6. R. W. Tarnuzzer, J. Colon, S. Patil, and S. Seal, Nano Lett. 5, 2573 (2005).

    Article  ADS  Google Scholar 

  7. A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, and C. N. R. Rao, Phys. Rev. B: Condens. Matter 74, 161306 (2006).

    Article  ADS  Google Scholar 

  8. V. Fernandes, R. J. O. Mossanek, P. Schio, J. J. Klein, A. J. A. de Oliveira, W. A. Ortiz, N. Mattoso, J. Varalda, W. H. Schreiner, M. Abbate, and D. H. Mosca, Phys. Rev. B: Condens. Matter 80, 035202 (2009).

    Article  ADS  Google Scholar 

  9. S.-Y. Chen, C.-H. Tsai, M.-Z. Huang, D.-C. Yan, T.-W. Huang, A. Gloter, C. L. Chen, H. J. Lin, C. T. Chen, and C.-L. Dong, J. Phys. Chem. C 116, 8707 (2012).

    Article  Google Scholar 

  10. M. Y. Ge, H. Wang, E. Z. Liu, J. Z. Jiang, Y. K. Li, Z. A. Xu, and H. Y. Li, Appl. Phys. Lett. 93, 062505 (2008).

    Article  ADS  Google Scholar 

  11. J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nat. Mater. 4, 173 (2005).

    Article  ADS  Google Scholar 

  12. M. J. Calderón and S. Das Sarma, Ann. Phys. 322, 2618 (2007).

    Article  ADS  MATH  Google Scholar 

  13. H. Bednarski, J. Magn. Magn. Mater. 349, 281 (2014).

    Article  ADS  Google Scholar 

  14. J. M. D. Coey, K. Wongsaprom, J. Alaria, and M. Venkatesan, J. Phys. D: Appl. Phys. 41, 134012 (2008).

    Article  ADS  Google Scholar 

  15. J. M. D. Coey, P. Stamenov, R. D. Gunning, M. Venkatesan and K. Paul, New J. Phys. 12, 053025 (2010).

    Article  ADS  Google Scholar 

  16. M. M. Noginov, N. Noginova, O. Amponsah, R. Bah, R. R. Rakhimov, and V. A. Atsarkin, J. Magn. Magn. Mater. 320, 2228 (2008).

    Article  ADS  Google Scholar 

  17. N. Noginova, T. Weaver, E. P. Giannelis, A. B. Bourlinos, V. A. Atsarkin, and V. V. Demidov, Phys. Rev. B: Condens. Matter 77, 014403 (2008).

    Article  ADS  Google Scholar 

  18. M. Fittipaldi, L. Sorace, A. L. Barra, C. Sangregorio, R. Sessoli, and D. Gatteschi, Phys. Chem. Chem. Phys. 11, 6555 (2009).

    Article  Google Scholar 

  19. K. Misra, S. I. Andronenko, M. H. Engelhard, A. Thurber, K. M. Reddy, and A. Punnoose, J. Appl. Phys. 103, 07D122 (2008).

    Article  Google Scholar 

  20. S. K. Misra, S. I. Andronenko, J. D. Harris, A. Thurber, G. L. Beausoleil II, and A. Punnoose, J. Nanosci. Nanotechnol. 13, 6798 (2013).

    Article  Google Scholar 

  21. F. Zhang, Q. Jin, and S.-W. Chan, J. Appl. Phys. 95, 4319 (2004).

    Article  ADS  Google Scholar 

  22. A. H. Morshed, M. E. Moussa, S. M. Bedair, R. Leonard, S. X. Liu, and N. El-Masry, Appl. Phys. Lett. 70, 1647 (1997).

    Article  ADS  Google Scholar 

  23. Gao Fei, Li Guo-Hua, Zhang Jian-Hui, Qin FuGuang, Yao Zhen-Yu, Liu Zhi-Kai, Wang Zhan-Guo, and Lin Lan-Ying, Chin. Phys. Lett. 18, 443 (2001).

    Article  ADS  Google Scholar 

  24. A. Masalov, O. Viagin, P. Maksimchuk, V. Seminko, I. Bespalova, A. Aslanov, Yu. Malyukin, and Yu. Zorenko, J. Lumin. 145, 61 (2014).

    Article  Google Scholar 

  25. G. Qi and R. T. Yang, J. Phys. Chem. B 108, 15738 (2004).

    Article  Google Scholar 

  26. J. Prohaska, M. Trömel, and H. Rager, Appl. Magn. Reson. 5, 387 (1993).

    Article  Google Scholar 

  27. R. S. de Biasi and M. L. N. Grillo, J. Phys. Chem. Solids 64, 1365 (2003).

    Article  ADS  Google Scholar 

  28. J. P. Wolfe and C. D. Jeffries, Phys. Rev. B: Solid State 4, 731 (1971).

    Article  ADS  Google Scholar 

  29. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Metal Ions (Clarendon, Oxford, 1970).

    Google Scholar 

  30. Ya. G. Klyava, Electron Paramagnetic Resonance Spectroscopy of Disordered Solids (Zinatne, Riga, 1988), p. 216 [in Russian].

    Google Scholar 

  31. M. Figaj and K. D. Becker, Solid State Ionics 141, 507 (2001).

    Article  Google Scholar 

  32. R. M. Rakhmatullin, I. N. Kurkin, V. V. Pavlov, and V. V. Semashko, Phys. Status Solidi B 251, 1545 (2014).

    Article  Google Scholar 

  33. Y. Komet, W. Low, and R. C. Linares, Phys. Lett. 19, 473 (1965).

    Article  ADS  Google Scholar 

  34. Y. Liu, Z. Lockman, A. Aziz, and J. MacManusDriscoll, J. Phys.: Condens. Matter 20, 165201 (2008).

    ADS  Google Scholar 

  35. M. D. Krcha and M. J. Janik, Langmuir 29, 10120 (2013).

    Article  Google Scholar 

  36. X. Chen, G. Li, Y. Su, X. Qiu, L. Li, and Z. Zou, Nanotechnology 20, 115606 (2009).

    Article  ADS  Google Scholar 

  37. D. G. Pintos, A. Juan, and B. Irigoyen, J. Phys. Chem. C 117, 18063 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Rakhmatullin.

Additional information

Original Russian Text © R.M. Rakhmatullin, V.V. Pavlov, V.V. Semashko, S.L. Korableva, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 148, No. 2, pp. 315–320.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakhmatullin, R.M., Pavlov, V.V., Semashko, V.V. et al. Room-temperature ferromagnetism in cerium dioxide powders. J. Exp. Theor. Phys. 121, 274–278 (2015). https://doi.org/10.1134/S1063776115080221

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115080221

Keywords

Navigation