Skip to main content
Log in

Feasibility of a feedback control of atomic self-organization in an optical cavity

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Many interesting nonlinear effects are based on the strong interaction of motional degrees of freedom of atoms with an optical cavity field. Among them is the spatial self-organization of atoms in a pattern where the atoms group in either odd or even sites of the cavity-induced optical potential. An experimental observation of this effect can be simplified by using, along with the original cavity-induced feedback, an additional electronic feedback based on the detection of light leaking the cavity and the control of the optical potential for the atoms. Following our previous study, we show that this approach is more efficient from the laser power perspective than the original scheme without the electronic feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, New J. Phys. 11, 055049 (2009).

    Article  ADS  Google Scholar 

  2. I. B. Mekhov and H. Ritsch, J. Phys. B: At., Mol. Opt. Phys. 45, 102001 (2012).

    Article  ADS  Google Scholar 

  3. H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, Rev. Mod. Phys. 85, 553 (2013).

    Article  ADS  Google Scholar 

  4. P. Domokos and H. Ritsch, Phys. Rev. Lett. 89, 253003 (2002).

    Article  ADS  Google Scholar 

  5. A. T. Black, H. W. Chan, and V. Vuletic, Phys. Rev. Lett. 91, 203001 (2003).

    Article  ADS  Google Scholar 

  6. A. T. Black, J. K. Thompson, and V. Vuletic, J. Phys. B: At., Mol. Opt. Phys. 38, S605 (2005).

    Article  ADS  Google Scholar 

  7. K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, Nature (London) 464, 1301 (2010).

    Article  ADS  Google Scholar 

  8. K. Baumann, R. Mottl, F. Brennecke, and T. Esslinger, Phys. Rev. Lett. 107, 140402 (2011).

    Article  ADS  Google Scholar 

  9. K. J. Arnold, M. P. Baden, and M. D. Barrett, Phys. Rev. Lett. 109, 153002 (2012).

    Article  ADS  Google Scholar 

  10. S. Mancini, D. Vitali, and P. Tombesi, Phys. Rev. A: At., Mol., Opt. Phys. 61, 053404 (2000).

    Article  ADS  Google Scholar 

  11. D. A. Steck, K. Jacobs, H. Mabuchi, T. Bhattacharya, and S. Habib, Phys. Rev. Lett. 92, 223004 (2004).

    Article  ADS  Google Scholar 

  12. P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. Pinkse, and G. Rempe, Nature (London) 428, 6978 (2004).

    Article  Google Scholar 

  13. N. V. Morrow, S. K. Dutta, and G. Raithel, Phys. Rev. Lett. 88, 093003 (2002).

    Article  ADS  Google Scholar 

  14. S. van der Meer, Rev. Mod. Phys. 57, 689 (1985).

    Article  ADS  Google Scholar 

  15. M. G. Raizen, J. Koga, B. Sundaram, Y. Kishimoto, H. Takuma, and T. Tajima, Phys. Rev. A: At., Mol., Opt. Phys. 58, 4757 (1998).

    Article  ADS  Google Scholar 

  16. D. Ivanov, S. Wallentowitz, and I. A. Walmsley, Phys. Rev. A: At., Mol., Opt. Phys. 67, 061401 (2003).

    Article  ADS  Google Scholar 

  17. I. S. Averbukh and Y. Prior, Phys. Rev. Lett. 94, 153002 (2005).

    Article  ADS  Google Scholar 

  18. T. Yu. Ivanova and D. A. Ivanov, JETP Lett. 82 (8), 482 (2005).

    Article  Google Scholar 

  19. D. A. Ivanov and T. Yu. Ivanova, Phys. Rev. A: At., Mol., Opt. Phys. 77, 025402 (2008).

    Article  ADS  Google Scholar 

  20. D. A. Ivanov and T. Yu. Ivanova, JETP Lett. 100 (7), 481 (2014).

  21. P. D. Drummond and C. W. Gardiner, J. Phys. A: Math. Gen. 13, 2353 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  22. D. Nagy, G. Szirmai, and P. Domokos, Eur. Phys. J. D 48, 127 (2008).

    Article  ADS  Google Scholar 

  23. D. A. Steck, Rubidium 85 D Line Data, available online at http://steck.us/alkalidata (revision 2.1.6, September 20, 2013).

    Google Scholar 

  24. H. M. Wiseman, Phys. Rev. A: At., Mol., Opt. Phys. 49, 2133 (1994).

    Article  ADS  Google Scholar 

  25. D. B. Khoroshko and S. Ya. Kilin, JETP 79, 691 (1994).

    ADS  Google Scholar 

  26. A. Gilchrist, C. W. Gardiner, and P. D. Drummond, Phys. Rev. A: At., Mol., Opt. Phys. 55, 3014 (1997).

    Article  ADS  Google Scholar 

  27. G. R. Dennis, J. J. Hope, and M. T. Johnsson, Comput. Phys. Commun. 184, 201 (2013).

    Article  MathSciNet  ADS  Google Scholar 

  28. T. Fischer, P. Maunz, P. W. H. Pinkse, T. Puppe, and G. Rempe, Phys. Rev. Lett. 88, 163002 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Ivanov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, D.A., Ivanova, T.Y. Feasibility of a feedback control of atomic self-organization in an optical cavity. J. Exp. Theor. Phys. 121, 179–185 (2015). https://doi.org/10.1134/S1063776115080051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115080051

Keywords

Navigation