Skip to main content
Log in

Rayleigh surface wave interaction with the 2D exciton Bose-Einstein condensate

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We describe the interaction of a Rayleigh surface acoustic wave (SAW) traveling on the semiconductor substrate with the excitonic gas in a double quantum well located on the substrate surface. We study the SAW attenuation and its velocity renormalization due to the coupling to excitons. Both the deformation potential and piezoelectric mechanisms of the SAW-exciton interaction are considered. We focus on the frequency and excitonic density dependences of the SAW absorption coefficient and velocity renormalization at temperatures both above and well below the critical temperature of Bose-Einstein condensation of the excitonic gas. We demonstrate that the SAW attenuation and velocity renormalization are strongly different below and above the critical temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Moskalenko, Sov. Phys. Solid State 4(1), 226 (1962).

    MathSciNet  Google Scholar 

  2. J. M. Blatt, K. W. Boer, and W. Brandt, Phys. Rev. 126, 1691 (1962).

    Article  ADS  Google Scholar 

  3. L. V. Keldysh and Yu. V. Kopaev, Sov. Phys. Solid State 6, 2219 (1965).

    Google Scholar 

  4. L. V. Keldysh and A. N. Kozlov, Sov. Phys. JETP 27, 521 (1968).

    ADS  Google Scholar 

  5. R. R. Guseinov and L. V. Keldysh, Sov. Phys. JETP 36, 1193 (1973).

    ADS  Google Scholar 

  6. D. Snoke and G. M. Kauvoulakis, arXiv:1212.4705v1.

  7. D. W. Snoke, J. P. Wolfe, and A. Mysyrowicz, Phys. Rev. B: Condens. Matter 41, 11171 (1990).

    Article  ADS  Google Scholar 

  8. L. V. Butov, C. W. Lai, A. L. Ivanov, A. C. Gossard, and D. S. Chemla, Nature (London) 417, 47 (2002).

    Article  ADS  Google Scholar 

  9. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szamanska, R. Andre, J. L. Staehli, V. Savona, P. W. Littlewood, B. Deveaud, and L. S. Dang, Nature (London) 443, 409 (2006).

    Article  ADS  Google Scholar 

  10. A. V. Chaplik and M. V. Krasheninnikov, Surf. Sci. 98, 533 (1980).

    Article  ADS  Google Scholar 

  11. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Volume 7: Theory of Elasticity, (Nauka, Moscow, 1965; Pergamon, Oxford 1970).

    Google Scholar 

  12. V. M. Kovalev and A. V. Chaplik, JETP Lett. 96, 775 (2013).

    Article  ADS  Google Scholar 

  13. E. G. Batyev, V. M. Kovalev, and A. V. Chaplik, JETP Lett. 99, 540 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kovalev.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boev, M.V., Kovalev, V.M. Rayleigh surface wave interaction with the 2D exciton Bose-Einstein condensate. J. Exp. Theor. Phys. 120, 998–1004 (2015). https://doi.org/10.1134/S1063776115060047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115060047

Keywords

Navigation