Skip to main content
Log in

Physical model of the vapor-liquid (insulator-metal) transition in an exciton gas

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose a simple physical model describing the transition of an exciton gas to a conducting exciton liquid. The transition occurs due to cohesive coupling of excitons in the vicinity of the critical point, which is associated with transformation of the exciton ground state to the conduction band and the emergence of conduction electrons. We calculate the cohesion binding energy for the exciton gas and, using it, derive the equations of state, critical parameters, and binodal. The computational method is analogous to that used by us earlier [5] for predicting the vapor-liquid (insulator-metal) phase transition in atomic (hypothetical, free of molecules) hydrogen and alkali metal vapors. The similarity of the methods used for hydrogen and excitons makes it possible to clarify the physical nature of the transition in the exciton gas and to predict more confidently the existence of a new phase transition in atomic hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Keldysh, Sov. Phys.—Usp. 13(2), 292 (1970).

    Article  ADS  Google Scholar 

  2. G. A. Thomas, T. M. Rice, and J. C. Hensel, Phys. Rev. Lett. 33, 219 (1974).

    Article  ADS  Google Scholar 

  3. V. Filinov, M. Bonitz, P. R. Levashov, V. E. Fortov, W. Ebeling, and M. Schlanges, Contrib. Plasma Phys. 43, 29 (2003).

    Article  Google Scholar 

  4. G. E. Norman and A. N. Starostin, Teplofiz. Vys. Temp. 6, 410 (1968).

    Google Scholar 

  5. A. L. Khomkin and A. S. Shumikhin, Plasma Phys. Rep. 39(10), 857 (2013).

    Article  ADS  Google Scholar 

  6. A. L. Khomkin and A. S. Shumikhin, J. Exp. Theor. Phys. 118(1), 72 (2014).

    Article  ADS  Google Scholar 

  7. J. Bardeen, J. Chem. Phys. 6, 367 (1938).

    Article  ADS  Google Scholar 

  8. A. L. Khomkin and A. S. Shumikhin, J. Exp. Theor. Phys. 114(1), 89 (2012).

    Article  ADS  Google Scholar 

  9. S. M. Stishov, Phys. Rev. B: Condens. Matter 47, 12260 (1993).

    Article  ADS  Google Scholar 

  10. A. A. Likal’ter, Phys.—Usp. 43(8), 755 (2000).

    Article  Google Scholar 

  11. H. Juranek and R. Redmer, J. Chem. Phys. 112, 3780 (2000).

    Article  ADS  Google Scholar 

  12. L. D. Landau and Ya. B. Zel’dovich, Zh. Eksp. Teor. Fiz. 14, 32 (1944).

    Google Scholar 

  13. A. L. Khomkin and A. S. Shumikhin, Vestn. Kazan. Tekhnol. Univ. 17, 67 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Khomkin.

Additional information

Original Russian Text © A.L. Khomkin, A.S. Shumikhin, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 147, No. 4, pp. 775–781.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khomkin, A.L., Shumikhin, A.S. Physical model of the vapor-liquid (insulator-metal) transition in an exciton gas. J. Exp. Theor. Phys. 120, 672–677 (2015). https://doi.org/10.1134/S106377611504007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611504007X

Keywords

Navigation