Skip to main content
Log in

The electroweak axion, dark energy, inflation and baryonic matter

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Contribution for the JETP special issue in honor of V.A. Rubakov’s 60th birthday

Abstract

In a previous paper [1], the standard model was generalized to include an electroweak axion which carries baryon plus lepton number, B + L. It was shown that such a model naturally gives the observed value of the dark energy, if the scale of explicit baryon number violation A was chosen to be of the order of the Planck mass. In this paper, we consider the effect of the modulus of the axion field. Such a field must condense in order to generate the standard Goldstone boson associated with the phase of the axion field. This condensation breaks baryon number. We argue that this modulus might be associated with inflation. If an additional BL violating scalar is introduced with a mass similar to that of the modulus of the axion field, we argue that decays of particles associated with this field might generate an acceptable baryon asymmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. McLerran, R. Pisarski, and V. Skokov, Phys. Lett. B 713, 301 (2012). arXiv:1204.2533 [hep-ph].

    Article  ADS  Google Scholar 

  2. G.’ t Hooft, Phys. Rev. D: Part., Fields 14, 3432 (1976); G.’ t Hooft, Phys. Rev. D: Part., Fields 18, 2199(E) (1978).

    Article  ADS  Google Scholar 

  3. R. Jackiw and C. Rebbi, Phys. Rev. Lett. 37, 172 (1976).

    Article  ADS  Google Scholar 

  4. S. R. Coleman, Subnucl. Ser. 15, 805 (1979).

    Google Scholar 

  5. N. V. Krasnikov, V. A. Rubakov, and V. F. Tokarev, Phys. Lett. B 79, 423 (1978).

    Article  ADS  Google Scholar 

  6. A. A. Anselm and A. A. Johansen, Nucl. Phys. B 412, 553 (1994). arXiv:hep-ph/9305271.

    Article  ADS  Google Scholar 

  7. R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977).

    Article  ADS  Google Scholar 

  8. R. D. Peccei and H. R. Quinn, Phys. Rev. D: Part., Fields 16, 1791 (1977).

    Article  ADS  Google Scholar 

  9. F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).

    Article  ADS  Google Scholar 

  10. Y. Nomura, T. Watari, and T. Yanagida, Phys. Lett. B 484, 103 (2000). arXiv:hep-ph/0004182.

    Article  ADS  Google Scholar 

  11. F. Takahashi and T. T. Yanagida, Phys. Lett. B 635, 57 (2006). arXiv:hep-ph/0512296.

    Article  ADS  Google Scholar 

  12. V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov, Phys. Lett. B 155, 36 (1985).

    Article  ADS  Google Scholar 

  13. P. B. Arnold and L. D. McLerran, Phys. Rev. D: Part., Fields 36, 581 (1987).

    Article  ADS  Google Scholar 

  14. P. B. Arnold and L. D. McLerran, Phys. Rev. D: Part., Fields 37, 1020 (1988).

    Article  ADS  Google Scholar 

  15. C. Wetterich, Nucl. Phys. B 302, 668 (1988).

    Article  ADS  Google Scholar 

  16. A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).

    Article  ADS  Google Scholar 

  17. A. H. Guth, Phys. Rev. D: Part., Fields 23, 347 (1981).

    Article  ADS  Google Scholar 

  18. V. F. Mukhanov and G. V. Chibisov, JETP Lett. 33, 532 (1981).

    ADS  Google Scholar 

  19. A. A. Starobinsky, Phys. Lett. B 117, 175 (1982).

    Article  ADS  Google Scholar 

  20. A. D. Linde, Phys. Lett. B 108, 389 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  21. A. D. Linde, Phys. Lett. B 129, 177 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).

    Article  ADS  Google Scholar 

  23. J. M. Bardeen, Phys. Rev. D: Part., Fields 22, 1882 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  24. A. H. Guth and S. Y. Pi, Phys. Rev. Lett. 49, 1110 (1982).

    Article  ADS  Google Scholar 

  25. J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Phys. Rev. D: Part., Fields 28, 679 (1983).

    Article  ADS  Google Scholar 

  26. R. Micha and I. I. Tkachev, Phys. Rev. Lett. 90, 121301 (2003). arXiv:hep-ph/0210202.

    Article  ADS  Google Scholar 

  27. R. Micha and I. I. Tkachev, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 70, 043538 (2004). arXiv:hepph/0403101.

    Article  Google Scholar 

  28. J. P. Blaizot, F. Gelis, J. F. Liao, L. McLerran, and R. Venugopalan, Nucl. Phys. A 873, 68 (2012). arXiv:1107.5296 [hep-ph].

    Article  ADS  Google Scholar 

  29. T. Epelbaum and F. Gelis, Nucl. Phys. A 872, 210 (2011). arXiv:1107.0668 [hep-ph].

    Article  ADS  Google Scholar 

  30. J. Berges, K. Boguslavski, S. Schlichting, and R. Venugopalan, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 89, 074011 (2014). arXiv:1303.5650 [hep-ph].

    Article  Google Scholar 

  31. S. R. Coleman, Nucl. Phys. B 262, 263 (1985); S. R. Coleman, Nucl. Phys. B 269, 744(E) (1986).

    Article  ADS  Google Scholar 

  32. A. Kusenko, V. Kuzmin, M. E. Shaposhnikov, and P. G. Tinyakov, Phys. Rev. Lett. 80, 3185 (1998). arXiv:hep-ph/9712212.

    Article  ADS  Google Scholar 

  33. A. Kusenko, Phys. Lett. B 404, 285 (1997). arXiv:hepth/9704073.

    Article  ADS  MathSciNet  Google Scholar 

  34. M. Shaposhnikov and C. Wetterich, Phys. Lett. B 683, 196 (2010). arXiv:0912.0208 [hep-th].

    Article  ADS  Google Scholar 

  35. I. Affleck and M. Dine, Nucl. Phys. B 249, 361 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  36. F. L. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659, 703 (2008). arXiv:0710.3755 [hep-th].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. McLerran.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McLerran, L. The electroweak axion, dark energy, inflation and baryonic matter. J. Exp. Theor. Phys. 120, 376–379 (2015). https://doi.org/10.1134/S1063776115030103

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115030103

Keywords

Navigation