Skip to main content
Log in

Formation of correlated states and optimization of nuclear reactions for low-energy particles at nonresonant low-frequency modulation of a potential well

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A method for the formation of correlated coherent states of low-energy particles in a parabolic potential well owing to the full-scale low-frequency modulation ω(t) = ω0sinΩt of the parameters of this well has been considered. It has been shown that such a modulation in the absence of a stochastic force acting on a particle results in the fast formation of correlated coherent states and in an increase in the correlation coefficient and transparency of the potential barrier to the limiting values |r(t)|max → 1 and D → 1. The presence of the stochastic force significantly affects the evolution of correlated coherent states, decreasing the rate of an increase in the correlation coefficient |r(t)|max (at Ω ≤ 10−4ω0) and limiting it at the level |r(∞)|max < 1 (at Ω = (0.001–0.1)ω0); |r(∞)|max increases with a decrease in the frequency of modulation and decreases with an increase in the intensity of the stochastic force. It has been shown that, at a realistic relation between the parameters, low-frequency modulation can ensure such |r|max value that the transparency of the potential barrier for low-energy particles increases by a factor of 1050–10100 or larger. The mechanism of the formation of correlated coherent states for charged particles in a gas or a low-pressure plasma placed in a low-frequency magnetic field has been considered. We have determined the relation between the magnetic field strength and modulation frequency, as well as the relation between the temperature and density of the gas (plasma), at which the method under consideration can be used to optimize nuclear reactions at low energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Schrödinger, Ber. Kgl. Akad. Wiss. 24, 296 (1930).

    Google Scholar 

  2. H. P. Robertson, Phys. Rev. A: At., Mol., Opt. Phys. 35, 667 (1930).

    Google Scholar 

  3. V. V. Dodonov and V. I. Man’ko, Tr. Fiz. Inst. im. P. N. Lebedeva, Akad. Nauk SSSR 183, 71 (1987).

    MathSciNet  Google Scholar 

  4. V. V. Dodonov, A. V. Klimov, and V. I. Man’ko, Tr. Fiz. Inst. im. P. N. Lebedeva, Akad. Nauk SSSR 200, 56 (1991).

    MathSciNet  Google Scholar 

  5. V. I. Vysotskii and M. V. Vysotskyy, J. Exp. Theor. Phys. 118(4), 534 (2014).

    Article  ADS  Google Scholar 

  6. V. V. Dodonov, A. B. Klimov, and V. I. Man’ko, Phys. Lett. A 220, 41 (1996).

    Article  ADS  Google Scholar 

  7. V. I. Vysotskii and S. V. Adamenko, Tech. Phys. 55(5), 613 (2010).

    Article  Google Scholar 

  8. V. I. Vysotskii, M. V. Vysotskyy, and S. V. Adamenko, J. Exp. Theor. Phys. 114(2), 243 (2012).

    Article  ADS  Google Scholar 

  9. V. I. Vysotskii, S. V. Adamenko, and M. V. Vysotskyy, J. Exp. Theor. Phys. 115(4), 551 (2012).

    Article  ADS  Google Scholar 

  10. V. I. Vysotskii, S. V. Adamenko, and M. V. Vysotskyy, Eur. Phys. J. A 49, 99 (2013). doi 10.1140/epja/i201313099-2

    Article  ADS  Google Scholar 

  11. V. I. Vysotskii and M. V. Vysotskyy, Ann. Nucl. Energy 62, 618 (2013).

    Article  Google Scholar 

  12. D. Letts, D. Cravens, and P. L. Hagelstein, Low-Energy Nuclear Reactions Sourcebook (American Chemical Society, Washington, DC, 2009), Vol. 2, p. 81.

    Google Scholar 

  13. P. L. Hagelstein, D. G. Letts, and D. Cravens, J. Condens. Matter Nucl. Sci. 3, 59 (2010).

    Google Scholar 

  14. V. V. Dodonov and A. V. Dodonov, J. Russ. Laser Res. 35, 39 (2014).

    Article  Google Scholar 

  15. A. V. Dodonov and V. V. Dodonov, Phys. Lett. A 35, 1071 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  16. V. I. Vysotskii, S. V. Adamenko, and M. V. Vysotskii, J. Surf. Invest. 6(2), 369 (2012).

    Article  Google Scholar 

  17. V. I. Vysotskii, M. V. Vysotskyy, and S. Bartalucci, Ann. Nucl. Energy 62, 613 (2013).

    Article  Google Scholar 

  18. V. N. Chernega, J. Russ. Laser Res. 34, 168 (2013).

    Article  Google Scholar 

  19. V. I. Vysotskii and A. A. Kornilova, Ann. Nucl. Energy 62, 626 (2013).

    Article  Google Scholar 

  20. S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars (Wiley, New York, 1983).

    Book  Google Scholar 

  21. Ya. B. Zel’dovich and I. V. Novikov, Relativistic Astrophysics (Nauka, Moscow, 1967; University of Chicago Press, Chicago, 1983).

    Google Scholar 

  22. S. V. Adamenko and V. I. Vysotskii, Found. Phys. 34, 1801 (2004).

    Article  ADS  Google Scholar 

  23. S. V. Adamenko and V. I. Vysotskii, Found. Phys. Lett. 17, 203 (2004).

    Article  MATH  Google Scholar 

  24. S. V. Adamenko and V. I. Vysotskii, Found. Phys. Lett. 19, 21 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Vysotskii.

Additional information

Original Russian Text © V.I. Vysotskii, M.V. Vysotskyy, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 147, No. 2, pp. 279–291.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vysotskii, V.I., Vysotskyy, M.V. Formation of correlated states and optimization of nuclear reactions for low-energy particles at nonresonant low-frequency modulation of a potential well. J. Exp. Theor. Phys. 120, 246–256 (2015). https://doi.org/10.1134/S1063776115020235

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115020235

Keywords

Navigation