Skip to main content
Log in

Jet formation in spallation of metal film from substrate under action of femtosecond laser pulse

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

It is well known that during ablation by an ultrashort laser pulse, the main contribution to ablation of the substance is determined not by evaporation, but by the thermomechanical spallation of the substance. For identical metals and pulse parameters, the type of spallation is determined by film thickness d f . An important gauge is metal heating depth d T at the two-temperature stage, at which electron temperature is higher than ion temperature. We compare cases with d f < d T (thin film) and d f d T (bulk target). Radius R L of the spot of heating by an optical laser is the next (after d f ) important geometrical parameter. The morphology of film bulging in cases where d f < d T on the substrate (blistering) changes upon a change in radius R L in the range from diffraction limit R L ∼ λ to high values of R L ≫ λ, where λ ∼ 1 μm is the wavelength of optical laser radiation. When d f < d T , R L ∼ λ, and F abs > F m, gold film deposited on the glass target acquires a cupola-shaped blister with a miniature frozen nanojet in the form of a tip on the circular top of the cupola (F abs and F m are the absorbed energy and the melting threshold of the film per unit surface area of the film). A new physical mechanism leading to the formation of the nanojet is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. S. Ivanov, A. I. Kuznetsov, V. P. Lipp, B. Rethfeld, B. N. Chichkov, M. E. Garcia, and W. Schulz, Appl. Phys. A: Mater. Sci. Process. 111, 675 (2013).

    Article  ADS  Google Scholar 

  2. Y. P. Meshcheryakov, M. V. Shugaev, Th. Mattle, Th. Lippert, and N. M. Bulgakova, Appl. Phys. A: Mater. Sci. Process. 113, 521 (2013).

    Article  ADS  Google Scholar 

  3. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, Phys. Rev. Lett. 81, 224 (1998).

    Article  ADS  Google Scholar 

  4. N. A. Inogamov, A. M. Oparin, Yu. V. Petrov, N. V. Shaposhnikov, S. I. Anisimov, D. von der Linde, and J. Meyer-ter-Vehn, JETP Lett. 69(4), 310 (1999).

    Article  ADS  Google Scholar 

  5. N. A. Inogamov, V. V. Zhakhovsky, Yu. V. Petrov, V. A. Khokhlov, S. I. Ashitkov, K. P. Migdal, D. K. Ilnitsky, Y. N. Emirov, K. V. Khishchenko, P. S. Komarov, V. V. Shepelev, M. B. Agranat, S. I. Anisimov, I. I. Oleynik, and V. E. Fortov, Proc. SPIE—Int. Soc. Opt. Eng. 9065, 906502 (2013).

    Google Scholar 

  6. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, Sov. Phys. JETP 39(2), 375 (1974).

    ADS  Google Scholar 

  7. Yu. V. Petrov, N. A. Inogamov, and K. P. Migdal, JETP Lett. 97(1), 20 (2013).

    Article  ADS  Google Scholar 

  8. Z. Lin, L. V. Zhigilei, and V. Celli, Phys. Rev. B: Condens. Matter 77, 075133 (2008).

    Article  ADS  Google Scholar 

  9. K. P. Migdal, Yu. V. Petrov, and N. A. Inogamov, Proc. SPIE—Int. Soc. Opt. Eng. 9065, 906503 (2013).

    Google Scholar 

  10. N. A. Inogamov, A. Ya. Faenov, V. V. Zhakhovsky, T. A. Pikuz, I. Yu. Skobelev, Yu. V. Petrov, V. A. Khokhlov, V. V. Shepelev, S. I. Anisimov, V. E. Fortov, Y. Fukuda, M. Kando, T. Kawachi, M. Nagasono, H. Ohashi, M. Yabashi, K. Tono, Y. Senda, T. Togashi, and T. Ishikawa, Contrib. Plasma Phys. 51, 419 (2011).

    Article  ADS  Google Scholar 

  11. Yu. V. Petrov and N. A. Inogamov, JETP Lett. 98(5), 278 (2013).

    Article  ADS  Google Scholar 

  12. N. A. Inogamov, S. I. Anisimov, and B. Retfel’d, J. Exp. Theor. Phys. 88(6), 1143 (1999).

    Article  ADS  Google Scholar 

  13. S. I. Anisimov, N. A. Inogamov, A. M. Oparin, B. Rethfeld, T. Yabe, M. Ogawa, and V. E. Fortov, Appl. Phys. A: Mater. Sci. Process. 69, 617 (1999).

    Article  ADS  Google Scholar 

  14. V. V. Zhakhovskii, K. Nishikhara, S. I. Anisimov, and N. A. Inogamov, JETP Lett. 71(4), 167 (2000).

    Article  ADS  Google Scholar 

  15. L. V. Zhigilei and B. J. Garrison, J. Appl. Phys. 88, 1281 (2000).

    Article  ADS  Google Scholar 

  16. S. I. Anisimov, V. V. Zhakhovskii, N. A. Inogamov, K. Nishihara, A. M. Oparin, and Yu. V. Petrov, JETP Lett. 77(11), 606 (2003).

    Article  ADS  Google Scholar 

  17. P. Lorazo, L. J. Lewis, and M. Meunier, Phys. Rev. Lett. 91, 225502 (2003).

    Article  ADS  Google Scholar 

  18. M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, Phys. Rev. B: Condens. Matter 75, 235414 (2007).

    Article  ADS  Google Scholar 

  19. F. Baset, K. Popov, A. Villafranca, J.-M. Guay, Z. Al-Rekabi, A. E. Pelling, L. Ramunno, and R. Bhardwaj, Opt. Express 21, 12527 (2013).

    Article  ADS  Google Scholar 

  20. B. Nagler, U. Zastrau, R. R. Fäustlin, S. M. Vinko, T. Whitcher, A. J. Nelson, R. Sobierajski, J. Krzywinski, J. Chalupsky, E. Abreu, S. Bajt, T. Bornath, T. Burian, H. Chapman, J. Cihelka, T. Döppner, S. Düsterer, T. Dzelzainis, M. Fajardo, E. Förster, C. Fortmann, E. Galtier, S. H. Glenzer, S. Göde, G. Gregori, V. Hajkova, P. Heimann, L. Juha, M. Jurek, F. Y. Khattak, A. R. Khorsand, D. Klinger, M. Kozlova, T. Laarmann, H. J. Lee, R. W. Lee, K.-H. Meiwes-Broer, P. Mercere, W. J. Murphy, A. Przystawik, R. Redmer, H. Reinholz, D. Riley, G. Röpke, F. Rosmej, K. Saksl, R. Schott, R. Thiele, J. Tiggesbäumker, S. Toleikis, T. Tschentscher, I. Uschmann, H. J. Vollmer, J. S. Wark, and B. Nagler, Nat. Phys. 5, 693 (2009).

    Article  Google Scholar 

  21. J. Colgan, J. Abdallah, Jr., A. Ya. Faenov, S. A. Pikuz, E. Wagenaars, N. Booth, O. Culfa, R. J. Dance, R. G. Evans, R. J. Gray, T. Kaempfer, K. L. Lancaster, P. McKenna, A. L. Rossall, I. Yu. Skobelev, K. S. Schulze, I. Uschmann, A. G. Zhidkov, and N. C. Woolsey, Phys. Rev. Lett. 110, 125001 (2013).

    Article  ADS  Google Scholar 

  22. B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993).

    Article  ADS  Google Scholar 

  23. N. A. Inogamov, A. Ya. Faenov, V. V. Zhakhovskii, I. Yu. Skobelev, V. A. Khokhlov, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, Y. Fukuda, S. V. Bulanov, T. Kawachi, Yu. V. Petrov, S. I. Anisimov, and V. E. Fortov, Contrib. Plasma Phys. 51, 361 (2011).

    Article  ADS  Google Scholar 

  24. M. Ishino, A. Ya. Faenov, M. Tanaka, S. Tamotsu, N. Hasegawa, M. Nishikino, T. A. Pikuz, T. Kaihori, and T. Kawachi, Appl. Phys. A: Mater. Sci. Process. 110, 179 (2013).

    Article  ADS  Google Scholar 

  25. M. Ishino, A. Ya. Faenov, M. Tanaka, S. Tamotsu, T. Pikuz, N. Hasegawa, M. Nishikino, N. Inogamov, I. Skobelev, V. Fortov, G. Norman, S. Starikov, V. Stegailov, T. Kaihori, T. Kawachi, and M. Yamagiwa, Proc. SPIE—Int. Soc. Opt. Eng. 8849, 88490F (2013). doi 10.1117/12.2022425

    ADS  Google Scholar 

  26. E. N. Borodin, A. E. Mayer, and V. S. Krasnikov, Curr. Appl. Phys. 11, 1315 (2011).

    Article  ADS  Google Scholar 

  27. P. K. Patel, A. J. Mackinnon, M. H. Key, T. E. Cowan, M. E. Foord, M. Allen, D. F. Price, H. Ruhl, P. T. Springer, and R. Stephens, Phys. Rev. Lett. 91, 125004 (2003).

    Article  ADS  Google Scholar 

  28. C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, Opt. Express 20, 24864 (2012).

    Article  ADS  Google Scholar 

  29. Y. Nakata, T. Okada, and M. Maeda, Jpn. J. Appl. Phys. 42, L1452 (2003).

    Article  ADS  Google Scholar 

  30. F. Korte, J. Koch, and B. N. Chichkov, Appl. Phys. A: Mater. Sci. Process. 79, 879 (2004).

    Article  ADS  Google Scholar 

  31. Y. Nakata, N. Miyanaga, and T. Okada, Appl. Surf. Sci. 253, 6555 (2007).

    Article  ADS  Google Scholar 

  32. A. I. Kuznetsov, J. Koch, and B. N. Chichkov, Appl. Phys. A: Mater. Sci. Process. 94, 221 (2009).

    Article  ADS  Google Scholar 

  33. V. I. Emel’yanov, D. A. Zayarniy, A. A. Ionin, I. V. Kiseleva, S. I. Kudryashov, S. V. Makarov, T. H. T. Nguyen, and A. A. Rudenko, JETP Lett. 99(9), 518 (2014).

    Article  ADS  Google Scholar 

  34. N. A. Inogamov, V. V. Zhakhovskii, S. I. Ashitkov, V. A. Khokhlov, Yu. V. Petrov, P. S. Komarov, M. B. Agranat, S. I. Anisimov, and K. Nishihara, Appl. Surf. Sci. 255, 9712 (2009); N. A. Inogamov, V. V. Zhakhovskii, S. I. Ashitkov, V. A. Khokhlov, Yu. V. Petrov, P. S. Komarov, M. B. Agranat, S. I. Anisimov, and K. Nishihara, Appl. Surf. Sci. 255, 9712 (2009); arXiv:0812.2965.

    Article  ADS  Google Scholar 

  35. N. A. Inogamov, Yu. V. Petrov, V. V. Zhakhovsky, V. A. Khokhlov, B. J. Demaske, S. I. Ashitkov, K. V. Khishchenko, K. P. Migdal, M. B. Agranat, S. I. Anisimov, V. E. Fortov, and I. I. Oleynik, AIP Conf. Proc. 1464, 593 (2012).

    Article  ADS  Google Scholar 

  36. A. V. Bushman, I. V. Lomonosov, and V. E. Fortov, Equations of State of Metals at High Energy Densities (Institute of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 1992) [in Russian].

    Google Scholar 

  37. A. V. Bushman, G. I. Kanel’, A. L. Ni, and V. E. Fortov, Intense Dynamic Loading of Condensed Matter (Taylor and Francis, New York, 1993).

    Google Scholar 

  38. D. M. Medvedev and Yu. V. Petrov, J. Exp. Theor. Phys. 88(1), 128 (1999).

    Article  ADS  Google Scholar 

  39. V. Recoules, J. Clerouin, G. Zerah, P. M. Anglade, and S. Mazevet, Phys. Rev. Lett. 96, 055503 (2006).

    Article  ADS  Google Scholar 

  40. M. B. Agranat, N. E. Andreev, S. I. Ashitkov, M. E. Veisman, P. R. Levashov, A. V. Ovchinnikov, D. S. Sitnikov, V. E. Fortov, and K. V. Khishchenko, JETP Lett. 85(6), 271 (2007).

    Article  ADS  Google Scholar 

  41. M. E. Veysman, M. B. Agranat, N. E. Andreev, S. I. Ashitkov, V. E. Fortov, K. V. Khishchenko, O. F. Kostenko, P. R. Levashov, A. V. Ovchinnikov, and D. S. Sitnikov, J. Phys. B: At., Mol. Opt. Phys. 41, 125704 (2008).

    Article  ADS  Google Scholar 

  42. S. Khakshouri, D. Alfe, and D. M. Duffy, Phys. Rev. B: Condens. Matter 78, 224304 (2008).

    Article  ADS  Google Scholar 

  43. P. R. Levashov, G. V. Sin’ko, N. A. Smirnov, D. V. Minakov, O. P. Shemyakin, and K. V. Khishchenko, J. Phys.: Condens. Matter. 22, 505501 (2010).

    Google Scholar 

  44. E. G. Gamaly, Phys. Rep. 508, 91 (2011).

    Article  ADS  Google Scholar 

  45. P. A. Loboda, N. A. Smirnov, A. A. Shadrin, and N. G. Karlykhanov, High Energy Density Phys. 7, 361 (2011).

    Article  ADS  Google Scholar 

  46. S. V. Starikov, V. V. Stegailov, G. E. Norman, V. E. Fortov, M. Ishino, M. Tanaka, N. Hasegawa, M. Nishikino, T. Ohba, T. Kaihori, E. Ochi, T. Imazono, T. Kavachi, S. Tamotsu, T. A. Pikuz, I. Yu. Skobelev, and A. Ya. Faenov, JETP Lett. 93(11), 642 (2011).

    Article  ADS  Google Scholar 

  47. S. G. Bezhanov, A. P. Kanavin, and S. A. Uryupin, Kvantovaya Elektron. (Moscow) 41, 447 (2011).

    Article  Google Scholar 

  48. G. E. Norman, S. V. Starikov, and V. V. Stegailov, J. Exp. Theor. Phys. 114(5), 792 (2012).

    Article  ADS  Google Scholar 

  49. G. Norman, S. Starikov, V. Stegailov, V. Fortov, I. Skobelev, T. Pikuz, A. Faenov, S. Tamotsu, Y. Kato, M. Ishino, M. Tanaka, N. Hasegawa, M. Nishikino, T. Ohba, T. Kaihori, Y. Ochi, T. Imazono, Y. Fukuda, M. Kando, and T. Kawachi, J. Appl. Phys. 112, 013104 (2012).

    Article  ADS  Google Scholar 

  50. G. V. Sin’ko, N. A. Smirnov, A. A. Ovechkin, P. R. Levashov, and K. V. Khishchenko, High Energy Density Phys. 9, 309 (2013).

    Article  ADS  Google Scholar 

  51. G. E. Norman, S. V. Starikov, V. V. Stegailov, I. M. Saitov, and P. A. Zhilyaev, Contrib. Plasma Phys. 53, 129 (2013).

    Article  ADS  Google Scholar 

  52. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Dover, New York, 2002).

    Google Scholar 

  53. http://teos.ficp.ac.ru/rusbank/.

  54. K. V. Khishchenko, Tech. Phys. Lett. 30(10), 829 (2004).

    Article  ADS  Google Scholar 

  55. N. A. Inogamov, V. V. Zhakhovsky, V. A. Khokhlov, S. I. Ashitkov, Y. N. Emirov, K. V. Khichshenko, A. Ya. Faenov, T. A. Pikuz, M. Ishino, M. Kando, N. Hasegawa, M. Nishikino, P. S. Komarov, B. J. Demaske, M. B. Agranat, S. I. Anisimov, T. Kawachi, and I. I. Oleynik, J. Phys.: Conf. Ser. 510, 012041 (2014).

    ADS  Google Scholar 

  56. N. A. Inogamov, V. V. Zhakhovsky, V. A. Khokhlov, B. J. Demaske, K. V. Khishchenko, and I. I. Oleynik, J. Phys.: Conf. Ser. 500, 192023 (2014).

    ADS  Google Scholar 

  57. V. V. Stegailov, Contrib. Plasma Phys. 50, 31 (2010).

    Article  ADS  Google Scholar 

  58. D. Fisher, M. Fraenkel, Z. Henis, E. Moshe, and S. Eliezer, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 65, 016409 (2001).

    Article  Google Scholar 

  59. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, United States, 1997).

    Google Scholar 

  60. W. Ebeling, A. Foerster, V. Fortov, V. K. Gryaznov, and A. Ya. Polishchuk, Thermophysical Properties of Hot Dense Plasmas (Teubner, Stuttgart, Germany, 1991).

    Google Scholar 

  61. A. Yu. Kuksin, G. E. Norman, V. V. Stegailov, and A. V. Yanilkin, Comput. Phys. Commun. 177, 34 (2007).

    Article  ADS  Google Scholar 

  62. D. K. Ilnitsky, V. A. Khokhlov, N. A. Inogamov, V. V. Zhakhovsky, Y. V. Petrov, K. V. Khishchenko, K. P. Migdal, and S. I. Anisimov, J. Phys.: Conf. Ser. 500, 032021 (2014).

    ADS  Google Scholar 

  63. A. K. Upadhyay, N. A. Inogamov, B. Rethfeld, and H. M. Urbassek, Phys. Rev. B: Condens. Matter 78, 045437 (2008).

    Article  ADS  Google Scholar 

  64. Ya. Cherednikov, N. A. Inogamov, and H. M. Urbassek, J. Opt. Soc. Am. B 28, 1817 (2011).

    Article  Google Scholar 

  65. B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, Phys. Rev. B: Condens. Matter 82, 064113 (2010).

    Article  ADS  Google Scholar 

  66. B. Chimier and V. T. Tikhonchuk, Phys. Rev. B: Condens. Matter 79, 184107 (2009).

    Article  ADS  Google Scholar 

  67. L. V. Zhigilei, Zh. Lin, and D. S. Ivanov, J. Phys. Chem. C 113, 11892 (2009).

    Article  Google Scholar 

  68. M. E. Povarnitsyn, T. E. Itina, K. V. Khishchenko, and P. R. Levashov, Appl. Surf. Sci. 253, 6343 (2007).

    Article  ADS  Google Scholar 

  69. A. N. Volkov and L. V. Zhigilei, J. Phys.: Conf. Ser. 59, 640 (2007).

    ADS  Google Scholar 

  70. V. V. Zhakhovskii, N. A. Inogamov, Yu. V. Petrov, S. I. Ashitkov, and K. Nishihara, Appl. Surf. Sci. 255, 9592 (2009).

    Article  ADS  Google Scholar 

  71. N. A. Inogamov, A. Ya. Faenov, V. A. Khokhlov, V. V. Zhakhovskii, Yu. V. Petrov, I. Yu. Skobelev, K. Nishihara, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, Y. Fukuda, S. V. Bulanov, T. Kawachi, S. I. Anisimov, and V. E. Fortov, Contrib. Plasma Phys. 49, 455 (2009).

    Article  Google Scholar 

  72. N. A. Inogamov and V. V. Zhakhovskii, JETP Lett. 100(1), 4 (2014).

    Article  ADS  Google Scholar 

  73. F. Aqra and A. Ayyad, Mater. Lett. 65, 2124 (2011).

    Article  Google Scholar 

  74. E. B. Webb III and G. S. Grest, Phys. Rev. Lett. 86, 2066 (2001).

    Article  ADS  Google Scholar 

  75. V. K. Semenchenko, Surface Phenomena in Metals and Alloys (Pergamon, New York, 1961).

    Google Scholar 

  76. V. V. Zhakhovskii, N. A. Inogamov, and K. Nishihara, JETP Lett. 87(8), 423 (2008).

    Article  ADS  Google Scholar 

  77. V. Zhakhovskii, N. Inogamov, and K. Nishihara, J. Phys.: Conf. Ser. 112, 042080 (2008).

    ADS  Google Scholar 

  78. S. I. Ashitkov, N. A. Inogamov, V. V. Zhakhovskii, Yu. N. Emirov, M. B. Agranat, I. I. Oleinik, S. I. Anisimov, and V. E. Fortov, JETP Lett. 95(4), 176 (2012).

    Article  ADS  Google Scholar 

  79. E. V. Golosov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, J. Exp. Theor. Phys. 113(1), 14 (2011).

    Article  ADS  Google Scholar 

  80. J. Reif, Springer Ser. Mater. Sci. 130, 19 (2010).

    Article  Google Scholar 

  81. A. Ya. Vorobyev and Chunlei Guo, Opt. Express 14, 2164 (2006).

    Article  ADS  Google Scholar 

  82. G. Birkhoff and E. H. Zarantonello, Jets, Wakes, and Cavities (Academic, New York, 1957).

    MATH  Google Scholar 

  83. M. A. Lavrent’ev and B. V. Shabat, Problems of Hydrodynamics and Their Mathematical Models (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  84. N. A. Inogamov, V. V. Zhakhovsky, S. I. Ashitkov, Y. N. Emirov, A. Y. Faenov, T. A. Pikuz, M. Ishino, M. Kando, N. Hasegawa, M. Nishikino, T. Kawachi, M. B. Agranat, A. V. Andriash, S. E. Kuratov, and I. I. Oleynik, J. Phys.: Conf. Ser. 500, 112070 (2014).

    ADS  Google Scholar 

  85. N. A. Inogamov, V. V. Zhakhovskii, S. I. Ashitkov, Yu. V. Petrov, M. B. Agranat, S. I. Anisimov, K. Nishihara, and V. E. Fortov, J. Exp. Theor. Phys. 107(1), 1 (2008).

    Article  ADS  Google Scholar 

  86. Y. P. Meshcheryakov and N. M. Bulgakova, Appl. Phys. A: Mater. Sci. Process. 82, 363 (2006).

    Article  ADS  Google Scholar 

  87. D. S. Ivanov, B. Rethfeld, G. M. O’Connor, T. J. Glynn, A. N. Volkov and L. V. Zhigilei, Appl. Phys. A: Mater. Sci. Process. 92, 791 (2008).

    Article  ADS  Google Scholar 

  88. D. S. Ivanov, Zh. Lin, B. Rethfeld, G. M. O’Connor, T. J. Glynn, and L. V. Zhigilei, J. Appl. Phys. 107, 013519 (2010).

    Article  ADS  Google Scholar 

  89. A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, J. Exp. Theor. Phys. 116(3), 347 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Inogamov.

Additional information

Original Russian Text © N.A. Inogamov, V.V. Zhakhovskii, V.A. Khokhlov, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 147, No. 1, pp. 20–56.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inogamov, N.A., Zhakhovskii, V.V. & Khokhlov, V.A. Jet formation in spallation of metal film from substrate under action of femtosecond laser pulse. J. Exp. Theor. Phys. 120, 15–48 (2015). https://doi.org/10.1134/S1063776115010136

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115010136

Keywords

Navigation