Skip to main content
Log in

Accurate measurement of the sticking time and sticking probability of Rb atoms on a polydimethylsiloxane coating

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We present the results of a systematic study of Knudsen’s flow of Rb atoms in cylindrical capillary cells coated with a polydimethylsiloxane (PDMS) compound. The purpose of the investigation is to determine the characterization of the coating in terms of the sticking probability and sticking time of Rb on the two types of coating of high and medium viscosities. We report the measurement of the sticking probability of a Rb atom to the coating equal to 4.3 × 10−5, which corresponds to the number of bounces 2.3 × 104 at room temperature. These parameters are the same for the two kinds of PDMS used. We find that at room temperature, the respective sticking times for high-viscosity and medium-viscosity PDMS are 22 ± 3 μs and 49 ± 6 μs. These sticking times are about million times larger than the sticking time derived from the surface Rb atom adsorption energy and temperature of the coating. A tentative explanation of this surprising result is proposed based on the bulk diffusion of the atoms that collide with the surface and penetrate inside the coating. The results can be important in many resonance cell experiments, such as the efficient magnetooptical trapping of rare elements or radioactive isotopes and in experiments on the light-induced drift effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Simsarian, A. Ghosh, G. Gwinner, L. A. Orozco, G. D. Sprouse, and P. A. Voytas, Phys. Rev. Lett. 76, 3522 (1996).

    Article  ADS  Google Scholar 

  2. E. Gomez, L. A. Orozco, and G. D. Sprouse, Rep. Prog. Phys. 69, 79 (2006).

    Article  ADS  Google Scholar 

  3. Z. T. Lu, K. L. Corwin, K. R. Vogel, C. E. Wieman, T. P. Dinneen, J. Maddi, and H. Gould, Phys. Rev. Lett. 79, 994 (1997).

    Article  ADS  Google Scholar 

  4. S. G. Crane, S. J. Brice, A. Goldschmidt, R. Guckert, A. Hime, J. J. Kitten, D. J. Vieira, and X. Zhao, Phys. Rev. Lett. 86, 2967 (2001).

    Article  ADS  Google Scholar 

  5. E. Traykov, U. Dammalapati, S. De, O. C. Dermois, L. Huisman, K. Jungmann, W. Kruithof, A. J. Mol, C. J. G. Onderwater, A. Rogachevskiy, M. da Silva e Silva, M. Sohani, O. Versolato, L. Willmann, and H. W. Wilschut, Nucl. Instrum. Methods Phys. Res., Sect. B 266, 4532 (2008).

    Article  ADS  Google Scholar 

  6. G. Gwinner, E. Gomez, L. A. Orozco, A. Perez Galvan, D. Sheng, Y. Zhao, G. D. Sprouse, J. A. Behr, K. P. Jackson, M. R. Pearson, S. Aubin, and V. V. Flambaum, Hyperfine Interact. 172, 45 (2006).

    Article  ADS  Google Scholar 

  7. J. R. Guest, N. D. Scielzo, I. Ahmad, K. Bailey, J. P. Greene, R. J. Holt, Z.-T. Lu, T. P. O’Connor, and D. H. Potterveld, Phys. Rev. Lett. 98, 093001 (2007).

    Article  ADS  Google Scholar 

  8. S. De, U. Dammalapati, K. Jungmann, and L. Willmann, arXiv:0807.4100.

  9. H. Kawamura, H. Arikawa, S. Ezure, K. Harada, T. Hayamizu, T. Inoue, T. Ishikawa, M. Itoh, T. Kato, T. Sato, T. Aoki, T. Furukawa, A. Hatakeyama, K. Hatanaka, K. Imai, T. Murakami, H. S. Nataraj, Y. Shimizu, T. Wakasa, H. P. Yoshida, and Y. Sakemi, in Proceedings of the XVIth International Conference on Electromagnetic Isotope Separators and Techniques Related to Their Applications, Matsue, Japan, December 2–7, 2012 (Matsue, 2012).

    Google Scholar 

  10. M. Tandecki, J. Zhang, R. Collister, S. Aubin, J. A. Behr, E. Gomez, G. Gwinner, L. A. Orozco, and M. R. Pearson, J. Instrum. 8, P12006 (2013).

    Article  Google Scholar 

  11. S. N. Atutov, I. M. Ermolaev, and A. M. Shalagin, Sov. Phys. JETP 65(4), 679 (1987).

    Google Scholar 

  12. H. G. C. Werij, J. E. M. Haverkort, P. C. M. Planken, E. R. Eliel, J. P. Woerdman, S. N. Atutov, P. L. Chapovskii, and F. Kh. Gel’mukhanov, Phys. Rev. Lett. 58, 2660 (1987).

    Article  ADS  Google Scholar 

  13. H. G. C. Werij, J. E. M. Haverkort, and J. P. Woerdman, Phys. Rev. A: At., Mol., Opt. Phys. 33, 3270 (1986).

    Article  ADS  Google Scholar 

  14. H. G. C. Werij and J. P. Woerdman, Phys. Rep. 169, 145 (1988).

    Article  ADS  Google Scholar 

  15. W. A. Hamel, A. D. Streater, and J. P. Woerdman, Opt. Commun. 63, 32 (1987).

    Article  ADS  Google Scholar 

  16. S. Gozzini, G. Nienhuis, E. Mariotti, G. Paffuti, C. Gabbanini, and L. Moi, Opt. Commun. 88, 341 (1992).

    Article  ADS  Google Scholar 

  17. S. Gozzini, J. H. Xu, C. Gabbanini, G. Paffuti, and L. Moi, Phys. Rev. A: At., Mol., Opt. Phys. 40, 6349 (1989).

    Article  ADS  Google Scholar 

  18. Masaya Okamoto, Takahiro Nakamura, and Shunichi Sato, Mater. Trans. 49, 2632 (2008).

    Article  Google Scholar 

  19. A. I. Parkhomenko and A. M. Shalagin, Astron. Rep. 57, 110 (2013).

    Article  ADS  Google Scholar 

  20. H. de Boer, The Dynamical Character of Adsorption (Clarendon, Oxford, 1978).

    Google Scholar 

  21. M. Stephens, R. Rhodes, and C. Wieman, J. Appl. Phys. 76, 3479 (1994).

    Article  ADS  Google Scholar 

  22. M. A. Bouchiat and J. Brossel, Phys. Rev. 147, 1 (1966).

    Article  ADS  Google Scholar 

  23. D. Budker, L. Hollberg, D. F. Kimball, J. Kitching, S. Pustelny, and V. V. Yashchuk, Phys. Rev. A: At., Mol., Opt. Phys. 71, 012903 (2005).

    Article  ADS  Google Scholar 

  24. C. Rahman and H. Robinson, IEEE J. Quantum Electron. 23, 452 (1987).

    Article  ADS  Google Scholar 

  25. K. F. Zhao, M. Schaden, and Z. Wu, Phys. Rev. Lett. 103, 073201 (2009).

    Article  ADS  Google Scholar 

  26. Emily Ulanski and Zhen Wu, Appl. Phys. Lett. 98, 201115 (2011).

    Article  ADS  Google Scholar 

  27. A. N. Nesmeyanov, Vapor Pressure of the Chemical Elements (Elsevier, Amsterdam, The Netherlands, 1963).

    Google Scholar 

  28. S. N. Atutov, V. Biancalana, P. Bicchi, C. Marinelli, E. Mariotti, M. Meucci, A. Nagel, K. A. Nasyrov, S. Rachini, and L. Moi, Phys. Rev. A: At., Mol., Opt. Phys. 60, 4693 (1999).

    Article  ADS  Google Scholar 

  29. A. E. Fick, Ann. Phys. (Weinheim) 94, 59 (1955).

    Google Scholar 

  30. E. B. Alexandrov, M. V. Balabas, D. Budker, D. English, D. F. Kimball, C.-H. Li, and V. V. Yashchuk, Phys. Rev. A: At., Mol., Opt. Phys. 66, 042903 (2002).

    Article  ADS  Google Scholar 

  31. S. N. Atutov, R. Calabrese, A. Facchini, G. Stancari, and L. Tomassetti, Eur. Phys. J. D 53, 89 (2009).

    Article  ADS  Google Scholar 

  32. S. N. Atutov, R. Calabrese, A. I. Plekhanov, and L. Tomassetti, Eur. Phys. J. D 68, 6 (2014).

    Article  ADS  Google Scholar 

  33. M. P. van Exter, W. A. Hamel, J. P. Woerdman, and B. R. P. Zeijlmans, IEEE J. Quantum Electron. 28, 1470 (1992).

    Article  ADS  Google Scholar 

  34. R. Guckert, E. P. Chamberlin, D. W. Preston, V. D. Sandberg, D. Tupa, D. J. Vieira, H. Wollnik, and X. X. Zhao, Nucl. Instrum. Methods Phys. Res., Sect. B 126(1–4), 383 (1997); R. Guckert, E. P. Chamberlin, D. W. Preston, V. D. Sandberg, D. Tupa, D. J. Vieira, H. Wollnik, and X. X. Zhao, in Proceedings of the XIIIth International Conference on Electromagnetic Isotope Separators and Techniques Related to Their Applications (EMIS-13), Bad Dürkheim, Germany, September 23–27, 1996 (Bad Dürkheim, 996), p. 383.

    Article  ADS  Google Scholar 

  35. W. B. Rowe, B. D. Freeman, and D. R. Paul, Polymer 50, 5565 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Atutov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atutov, S.N., Plekhanov, A.I. Accurate measurement of the sticking time and sticking probability of Rb atoms on a polydimethylsiloxane coating. J. Exp. Theor. Phys. 120, 1–8 (2015). https://doi.org/10.1134/S1063776115010094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115010094

Keywords

Navigation