Skip to main content
Log in

Recombination in nonideal ion gas discharge afterglow plasma

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Recombination rates in ion plasma are presented that are obtained by processing experimental data on gas discharge afterglow in fluorine and sulfur hexafluoride media. A theoretical explanation is given to the slowing down of the recombination rate of plasma in such media as the degree of Coulomb nonideality of the media increases. An additional factor for the suppression of recombination—solvation of ions—is considered. It is shown that, in the case of discharge afterglow plasma in a fluorine medium, the process of recombination proceeds in two stages with the formation of intermediate metastable ion pairs produced by ion-molecule clusters. In a sulfur hexafluoride medium, the formation of such pairs does not have a significant effect on the recombination rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Chunikhin and M. A. Zhavoronkov, High Voltage Switchgear (Energoatomizdat, Moscow, 1985; Mir, Moscow, 1989).

    Google Scholar 

  2. R. Kh. Amirov, Doctoral Dissertation in Mathematical Physics (Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, 2000).

    Google Scholar 

  3. M. S. Apfel’baum, Elektron. Obrab. Mater. 47(1), 43 (2011).

    Google Scholar 

  4. O. A. Fedorovich and L. M. Voitenko, Probl. At. Sci. Tech., Ser.: Plasma Phys. 17(1), 122 (2011).

    Google Scholar 

  5. O. A. Fedorovich and L. M. Voitenko, Vopr. At. Nauki Tekh., Ser.: Plazmennaya Elektron. Nov. Metody Uskor., No. 7, 354 (2010).

    Google Scholar 

  6. O. A. Fedorovich, Probl. At. Sci. Technol., No. 1, 145 (2009).

    Google Scholar 

  7. O. A. Fedorovich and L. M. Voitenko, Probl. At. Sci. Technol., No. 1, 201 (2013).

    Google Scholar 

  8. V. I. Oreshkin, S. A. Chaikovsky, N. A. Ratakhin, A. Grinenko, and Ya. E. Krasik, Phys. Plasmas 14, 102703 (2007).

    Article  ADS  Google Scholar 

  9. S. Yatom, V. Vekselman, J. Gleizer, and Ya. E. Krasik, J. Appl. Phys. 109, 073312 (2011).

    Article  ADS  Google Scholar 

  10. D. Sheftman and Ya. E. Krasik, Phys. Plasmas 18, 092704 (2011).

    Article  ADS  Google Scholar 

  11. A. S. Bashkin, V. N. Igoshin, A. N. Oraevskii, and V. A. Shcheglov, Chemical Lasers, (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  12. N. L. Aleksandrov and A. M. Napartovich, Phys.-Usp. 36(3), 107 (1993).

    Article  ADS  Google Scholar 

  13. N. L. Aleksandrov, S. V. Kindysheva, M. M. Nudnova, and A. Yu. Starikovskiy, J. Phys. D: Appl. Phys. 43, 255201 (2010).

    Article  ADS  Google Scholar 

  14. A. V. Shavlov, Phys. Lett. A 373, 3959 (2009).

    Article  MATH  ADS  Google Scholar 

  15. B. M. Smirnov, Atomic Collisions and Elementary Processes in Plasma (Atomizdat, Moscow, 1968) [in Russian].

    Google Scholar 

  16. Gas Lasers, Ed. by I. M. McDaniel and W. M. Nighan (Academic, New York, 1982; Mir, Moscow, 1986).

    Google Scholar 

  17. W. L. Morgan, B. L. Whitten, and J. N. Bardsley, Phys. Rev. Lett. 45, 2021 (1985).

    Article  ADS  Google Scholar 

  18. D. K. Bates, J. Phys. B: At. Mol. Phys. 15, L119 (1982).

    Article  ADS  Google Scholar 

  19. H. Massey, Negative Ions (Cambridge University Press, Cambridge, 1976; Mir, Moscow, 1979).

    Google Scholar 

  20. W. L. Morgan, J. N. Bardsley, J. Lin, and B. L. Whitten, Phys. Rev. A: At., Mol., Opt. Phys. 26, 1696 (1982).

    Article  ADS  Google Scholar 

  21. W. L. Morgan and A. Zoke, Phys. Rev. A: At., Mol., Opt. Phys. 23, 1256 (1985).

    Article  ADS  Google Scholar 

  22. M. R. Flanerry and T. P. Yang, Appl. Phys. Lett. 33, 574 (1978).

    Article  ADS  Google Scholar 

  23. R. Kh. Amirov, E. I. Asinovskii, and S. V. Kostyuchenko, Teplofiz. Vys. Temp. 29, 671 (1991).

    Google Scholar 

  24. M. R. Flanerry, J. Phys. B: At. Mol. Phys. 18, L531 (1985).

    Article  ADS  Google Scholar 

  25. B. M. Smirnov, Complex Ions (Nauka, Moscow, 1983; Gordon and Breach, Amsterdam, The Netherlands, 1985).

    Google Scholar 

  26. I. P. Stakhanov, JETP Lett. 18(3), 114 (1973).

    ADS  Google Scholar 

  27. R. Hofland, M. L. Lunquist, A. Ching, and J. S. Whitter, J. Appl. Phys. 45, 2207 (1974).

    Article  ADS  Google Scholar 

  28. V. Ya. Agroskin, G. K. Vasil’ev, V. I. Kir’yanov, and V. L. Tal’roze, Khim. Fiz. 2, 1320 (1983).

    Google Scholar 

  29. Gaseous Dilectrics II, Ed. by L. G. Christophorou (Pergamon, New York, 1980).

    Google Scholar 

  30. A. V. Eletskii and B. M. Smirnov, in Encyclopedia of Low Temperature Plasma, Ed. by V. E. Fortov (Nauka, Moscow, 2000), p. 190 [in Russian].

  31. A. V. Lankin and G. E. Norman, J. Phys. A: Math. Gen. 42, 214032 (2009).

    Article  ADS  Google Scholar 

  32. A. V. Lankin and G. E. Norman, J. Phys. A: Math. Gen. 42, 214042 (2009).

    Article  ADS  Google Scholar 

  33. Yu. K. Kurilenkov, Teplofiz. Vys. Temp. 18, 1312 (1980).

    Google Scholar 

  34. Y. Hahn, Phys. Lett. A 231, 82 (1993).

    Article  ADS  Google Scholar 

  35. M. Yu. Romanovskii, J. Exp. Theor. Phys. 87(4), 672 (1998).

    Article  ADS  Google Scholar 

  36. A. V. Lankin, J. Exp. Theor. Phys. 107(5), 870 (2008).

    Article  ADS  Google Scholar 

  37. A. Lankin and G. Norman, Contrib. Plasma Phys. 49, 723 (2009).

    Article  ADS  Google Scholar 

  38. D. V. Syers, in Atomic and Molecular Processes, Ed. by D. R. Bates (Academic, New York, 1962 Mir, Moscow, 1964), p. 240.

  39. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Volume 10: E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1979; Butterworth-Heinemann, Oxford, 1981).

    Google Scholar 

  40. R. Kh. Amirov, E. I. Asinovskii, S. V. Kostyuchenko, and V. V. Markovets, Teplofiz. Vys. Temp. 25, 793 (1987).

    ADS  Google Scholar 

  41. R. Kh. Amirov, E. I. Asinovskii, S. V. Kostyuchenko, et al., Preprint No. 8-200, IVTAN (Institute for High Temperatures of the Academy of Sciences of the Soviet Union, Moscow, 1986).

    Google Scholar 

  42. V. V. Savkin, Candidate’s Dissertation in Mathematical Physics (Moscow Institute of Physics and Technology, Moscow, 1983).

    Google Scholar 

  43. I. M. Bortnik, A. N. Kushko, and A. N. Lobanov, Sov. Phys. Tech. Phys. 30(9), 1015 (1986).

    Google Scholar 

  44. G. L. Natanson, Sov. Phys. Tech. Phys. 4, 1263 (1959).

    Google Scholar 

  45. H. L. Chen, R. E. Center, D. W. Trainor, and W. I. Fyfe, J. Appl. Phys. 48, 2297 (1987).

    Article  ADS  Google Scholar 

  46. M. J. Vasile and A. Comparative, J. Appl. Phys. 51, 2503 (1980).

    Article  ADS  Google Scholar 

  47. J. N. Bardsley and J. M. Waridehra, J. Chem. Phys. 78, 7227 (1983).

    Article  ADS  Google Scholar 

  48. A. Calisti and B. Talin, Contrib. Plasma Phys. 51, 524 (2011).

    Article  Google Scholar 

  49. G. Bannasch and T. Pohl, Phys. Rev. A: At., Mol., Opt. Phys. 84, 052710 (2011).

    Article  ADS  Google Scholar 

  50. Yu. V. Dumin, Plasma Phys. Rep. 37, 858 (2011).

    Article  ADS  Google Scholar 

  51. A. A. Bobrov, S. Ya. Bronin, B. B. Zelener, B. V. Zelener, E. A. Manykin, and D. R. Khikhlukha, J. Exp. Theor. Phys. 112(3), 527 (2011).

    Article  ADS  Google Scholar 

  52. A. A. Likal’ter, Sov. Phys. JETP 29(1), 133 (1969).

    ADS  Google Scholar 

  53. B. M. Smirnov, Dokl. Akad. Nauk SSSR 195, 45 (1970).

    Google Scholar 

  54. CPMD (Car-Parrinello Molecular Dynamics): An Ab Initio Electronic Structure and Molecular Dynamics Program. URL http://www.cpmd.org/cpmdmanual.html.

  55. N. Rosch and S. B. Trickey, J. Chem. Phys. 106, 8940 (1997).

    Article  ADS  Google Scholar 

  56. G. E. Norman and V. V. Stegailov, Mat. Model. 24, 3 (2012).

    MATH  Google Scholar 

  57. M. Capitelli and D. Giordano, Phys. Rev. A: At., Mol., Opt. Phys. 80, 032113 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kh. Amirov.

Additional information

Original Russian Text © R.Kh. Amirov, A.V. Lankin, G.E. Norman, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 146, No. 2, pp. 384–397.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirov, R.K., Lankin, A.V. & Norman, G.E. Recombination in nonideal ion gas discharge afterglow plasma. J. Exp. Theor. Phys. 119, 341–352 (2014). https://doi.org/10.1134/S1063776114080019

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114080019

Keywords

Navigation