Skip to main content
Log in

Transient processes in two-barrier nanostructures

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

An analytic solution to the problem on transient processes in a two-barrier nanostructure is found. Explicit expressions are obtained for a transient current produced by an instantly applied weak electric field. The current relaxes to a stationary state for a time ħ/Γ (Γ is the width of a resonance level), oscillating at a frequency of ξ = ɛ − ɛ R , where ɛ is the energy of electrons coming from an emitter and ɛ R is the resonance level energy. The transient current for interacting electrons is found in the quasi-classical approximation. It is shown that interaction between electrons can drastically change the transient current, especially in the presence of hysteresis of the current-voltage characteristic (CVC). Near extreme CVC values in the region of negative differential conductivity, the oscillation frequency tends to zero and becomes imaginary, compensating the decay. Thus, the transient current relaxes with very large times without oscillations. In contrast, in the case of positive differential conductivity, the oscillation frequency becomes very high, while the relaxation time remains the same, 1/Γ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Esaki and R. Tsu, Appl. Phys. Lett. 22, 562 (1973).

    Article  ADS  Google Scholar 

  2. L. L. Chang, L. Esaki, and R. Tsu, Appl. Phys. Lett. 24, 593 (1974).

    Article  ADS  Google Scholar 

  3. V. A. Baskakov and A. V. Popov, Wave Motion 14, 123 (1991).

    Article  MathSciNet  Google Scholar 

  4. A. Arnold, VLSI Des. 6, 313 (1998).

    Article  Google Scholar 

  5. A. Arnold, Transp. Theory Stat. Phys. 30, 561 (2001).

    Article  MATH  ADS  Google Scholar 

  6. O. Pinaud, J. Appl. Phys. 92, 1987 (2002).

    Article  ADS  Google Scholar 

  7. R. K. Mains and C. Haddad, J. Appl. Phys. 67, 591 (1990).

    Article  ADS  Google Scholar 

  8. J. F. Mennemann, A. Juugel, and H. Kosina, J. Comput. Phys. 239, 187 (2013).

    Article  MathSciNet  ADS  Google Scholar 

  9. V. F. Elesin, J. Exp. Theor. Phys. 89(2), 377 (1999).

    Article  ADS  Google Scholar 

  10. V. F. Elesin, I. Yu. Kateev, and A. I. Podlivaev, Semiconductors 36(9), 1053 (2002).

    Article  ADS  Google Scholar 

  11. V. F. Elesin, I. Yu. Kateev, and A. Yu. Sukochev, Nanotechnol. Russ. 8(2), 245 (2013).

    Article  Google Scholar 

  12. V. F. Elesin, J. Exp. Theor. Phys. 97(2), 343 (2003).

    Article  ADS  Google Scholar 

  13. D. G. Sokolovskii and M. Yu. Sumetskii, Theor. Math. Phys. 64(2), 802 (1985).

    Article  Google Scholar 

  14. D. Sokolovski, Phys. Rev. B: Condens. Matter 37, 4201 (1988).

    Article  ADS  Google Scholar 

  15. F. W. Sheard and C. A. Tooms, Appl. Phys. Lett. 52, 1228 (1988).

    Article  ADS  Google Scholar 

  16. V. F. Elesin, J. Exp. Theor. Phys. 92(4), 710 (2001).

    Article  ADS  Google Scholar 

  17. V. F. Elesin, J. Exp. Theor. Phys. 117(5), 950 (2013).

    Article  ADS  Google Scholar 

  18. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics (Fizmatlit, Moscow, 1958; Pergamon, London, 1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Elesin.

Additional information

Original Russian Text © V.F. Elesin, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 145, No. 6, pp. 1078–1086.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elesin, V.F. Transient processes in two-barrier nanostructures. J. Exp. Theor. Phys. 118, 951–958 (2014). https://doi.org/10.1134/S1063776114060041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114060041

Keywords

Navigation