Skip to main content
Log in

Manifestation of Hydride Phase Transformations in the Hydrogen Permeability of Polycrystalline Titanium and Zirconium

  • LATTICE DYNAMICS AND PHASE TRANSITIONS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Titanium and zirconium alloys are indispensable structural materials in many technical applications due to their unique mechanical and physicochemical properties. Titanium and zirconium belong to the fourth (“titanium”) group, due to which one would expect them to exhibit a similar character of hydrogen permeability through alloys of these metals. The results of experiments on the hydrogen permeability of these alloys are compared and analyzed. It is revealed that the hydrogen permeation kinetics for both alloys is mainly determined by the low rate of surface processes and phase transformations, occurring as a result of increasing hydrogen concentration. It is shown that the hydrogen permeability method can be used to find the terminal solid solubility of hydrogen in metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. D. Khatamian and J. H. Root, J. Nucl. Mater. 372, 106 (2008). https://doi.org/10.1016/j.jnucmat.2007.02.010

    Article  ADS  Google Scholar 

  2. J. H. Root and R. W. L. Fong, J. Nucl. Mater. 232, 75 (1996). https://doi.org/10.1016/0022-3115(96)00379-0

    Article  ADS  Google Scholar 

  3. O. Zanellato, M. Preuss, J.-Y. Buffiere, et al., J. Nucl. Mater. 420, 537 (2012). https://doi.org/10.1016/j.jnucmat.2011.11.009

    Article  ADS  Google Scholar 

  4. P. Vizcaíno, J. R. Santisteban, M. A. Vicente Alvarez, et al., J. Nucl. Mater. 447, 82 (2014). https://doi.org/10.1016/j.jnucmat.2013.12.025

    Article  ADS  Google Scholar 

  5. M. S. Blackmur, J. D. Robson, M. Preuss, et al., J. Nucl. Mater. 464, 160 (2015). https://doi.org/10.1016/j.jnucmat.2015.04.025

    Article  ADS  Google Scholar 

  6. K. Une and Sh. Ishimoto, J. Nucl. Sci. Technol. 41, 949 (2004). https://doi.org/10.1080/18811248.2004.9715569

    Article  Google Scholar 

  7. D. Khatamian and V. C. Ling, J. Alloys Compd. 253–254, 162 (1997). https://doi.org/10.1016/S0925-8388(96)02947-7

    Article  Google Scholar 

  8. R. N. Singh, S. Mukherjee, A. Gupta, and S. Banerjee, J. Alloys Compd. 389, 102 (2005). https://doi.org/10.1016/j.jallcom.2004.07.048

    Article  Google Scholar 

  9. G. F. Slattery, J. Nucl. Mater. 32, 30 (1969). https://doi.org/10.1016/0022-3115(69)90139-1

    Article  ADS  Google Scholar 

  10. V. K. Sinha, J. Chem. Soc., Faraday Trans. 1 72, 134 (1976). https://doi.org/10.1039/F19767200134

    Article  Google Scholar 

  11. C. E. Coleman and J. F. R. Ambler, Scr. Metall. 17, 77 (1983). https://doi.org/10.1016/0036-9748(83)90074-1

    Article  Google Scholar 

  12. C. D. Cann and A. Atrens, J. Nucl. Mater. 88, 42 (1980). https://doi.org/10.1016/0022-3115(80)90384-0

    Article  ADS  Google Scholar 

  13. Z. L. Pan, I. G. Ritchie, and M. P. Puls, J. Nucl. Mater. 228, 227 (1996). https://doi.org/10.1016/S0022-3115(95)00217-0

    Article  ADS  Google Scholar 

  14. R. W. L. Fong and S. Spooner, Scr. Mater. 30, 649 (1994). https://doi.org/10.1016/0956-716X(94)90445-6

    Article  Google Scholar 

  15. N. E. Paton, B. S. Hickman, and D. H. Leslie, Metall. Trans. 2 (10), 2791 (1971). https://doi.org/10.1007/bf02813253

    Article  Google Scholar 

  16. Z. L. Pan, M. P. Puls, and I. G. Ritchie, J. Alloys Compd. 211–212, 245 (1994). https://doi.org/10.1016/0925-8388(94)90493-6

    Article  Google Scholar 

  17. N. M. Vlasov and V. A. Zaznoba, Zh. Tekh. Fiz. 79, 49 (2009).

    Google Scholar 

  18. I. S. Sakvin, Proc. XVI Int. Conf. of Students, Postgraduates, and Young Scientists, Tomsk, April 23–26, 2019, p. 280.

  19. M.P. Puls, Engineering Materials, London 153 (2012). https://doi.org/10.1007/978-1-4471-4195-2_5

  20. A. A. Pisarev, I. V. Tsvetkov, E. D. Marenkov, and S. S. Yarko, Permeability of Hydrogen through Metals: A Textbook (Izd-vo MIFI, Moscow, 2008).

    Google Scholar 

  21. Y. Fukai, The Metal–Hydrogen System: Basic Bulk Properties (Springer).

  22. J. J. Kearns, J. Nucl. Mater. 22, 292 (1967). https://doi.org/10.1016/0022-3115(67)90047-5

    Article  ADS  Google Scholar 

  23. E. Zuzek and J. R. Abdata, Bull. Alloy Phase Diagrams 11, 386 (1990). https://doi.org/10.1007/bf02843318

    Article  Google Scholar 

  24. B. A. Kolachev, A. A. Il’in, V. A. Lavrenko, and Yu. V. Levinskii, Hydride Systems: A Handbook (Metallurgiya, Moscow, 1992).

    Google Scholar 

  25. Yu. V. Levinskii and Yu. B. Patrikeev, Hydrogen in Metals and Intermetallic Compounds (Nauchnyi Mir, Moscow, 2017).

    Google Scholar 

  26. J. J. Kearns, J. Nucl. Mater. 22, 292 (1967). https://doi.org/10.1016/0022-3115(67)90047-5

    Article  ADS  Google Scholar 

  27. A. San-Martin and F. D. Manchester, Bull. Alloy Phase Diagrams 8, 30 (1987). https://doi.org/10.1007/BF02868888

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 24-29-00625)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Denisov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Dedicated to the 300th anniversary of St. Petersburg State University

Translated by Yu. Sin’kov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisov, E.A., Dmitriev, V.A. Manifestation of Hydride Phase Transformations in the Hydrogen Permeability of Polycrystalline Titanium and Zirconium. Crystallogr. Rep. 69, 45–52 (2024). https://doi.org/10.1134/S1063774523601272

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774523601272

Navigation