Skip to main content
Log in

Growth of Ferroelectric Domains in Polar Direction

  • PHYSICAL PROPERTIES OF CRYSTALS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The forward domain growth in polar direction has been investigated on the example of the formation of isolated wedge-shaped domains and arrays of domains on lithium niobate nonpolar cuts under an electric field of a scanning probe microscope. Domain growth occurs due to the generation of steps and motion of charged kinks along charged domain walls (CDWs). A simulation of field spatial distribution showed that the generation of steps near a domain vertex is mainly caused by the effect of external field, whereas the forward growth is due to the kink motion in the field induced by neighboring kinks. Scanning by a probe tip with an applied voltage leads to the self-assembled formation of domain arrays with domain length alternation: doubling, quadrupling, and chaotic behavior under the action of the depolarizing fields formed by three neighboring domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. A. K. Tagantsev, L. E. Cross, and J. Fousek, Domains in Ferroic Crystals and Thin Films (Springer, Berlin, 2010). https://doi.org/10.1007/978-1-4419-1417-0

    Book  Google Scholar 

  2. R. E. Newnham, C. S. Miller, L. E. Cross, et al., Phys. Status Solidi 32, 69 (1975). https://doi.org/10.1002/pssa.2210320107

    Article  ADS  Google Scholar 

  3. S. Wada, Ferroelectrics 389, 3 (2009). https://doi.org/10.1080/00150190902987335

    Article  ADS  Google Scholar 

  4. V. Ya. Shur, Advanced Piezoelectric Materials, Ed. by K. Uchino (Woodhead, Cambridge, 2017). https://doi.org/10.1016/B978-0-08-102135-4.00006-0

    Book  Google Scholar 

  5. M. M. Fejer, G. A. Magel, D. H. Jundt, et al., IEEE J. Quantum Electron. 28, 2631 (1992). https://doi.org/10.1109/3.161322

    Article  ADS  Google Scholar 

  6. D. S. Hum and M. M. Fejer, C. R. Phys. 8, 180 (2007). https://doi.org/10.1016/j.crhy.2006.10.022

    Article  ADS  Google Scholar 

  7. V. Ya. Shur, E. L. Rumyantsev, E. V. Nikolaeva, et al., Ferroelectrics 236, 129 (2000). https://doi.org/10.1080/00150190008016047

    Article  ADS  Google Scholar 

  8. V. Ya. Shur, A. R. Akhmatkhanov, and I. S. Baturin, Appl. Phys. Rev. 2, 040604 (2015). https://doi.org/10.1063/1.4928591

  9. M. V. Klassen-Neklyudova, M. A. Chernysheva, and A. A. Shternberg, Dokl. Akad. Nauk SSSR 18, 527 (1948).

    Google Scholar 

  10. B. Matthias and A. von Hippel, Phys. Rev. 73, 1378 (1948). https://doi.org/10.1103/PhysRev.73.1378

    Article  ADS  Google Scholar 

  11. W. J. Merz, Phys. Rev. 95, 690 (1954). https://doi.org/10.1103/PhysRev.95.690

    Article  ADS  Google Scholar 

  12. E. A. Little, Phys. Rev. 98, 978 (1955). https://doi.org/10.1103/PhysRev.98.978

    Article  ADS  Google Scholar 

  13. R. Le Bihan, Ferroelectrics 97, 19 (1988). https://doi.org/10.1080/00150198908018081

    Article  ADS  Google Scholar 

  14. A. Gruverman, O. Auciello, and H. Tokumoto, Annu. Rev. Mater. Sci. 28, 101 (1998). https://doi.org/10.1146/annurev.matsci.28.1.101

    Article  ADS  Google Scholar 

  15. A. L. Kholkin, S. V. Kalinin, A. Roelofs, and A. Gruverman, Scanning Probe Microscopy, Ed. by S. Kalinin and A. Gruverman (Springer, New York, 2007), p. 173. https://doi.org/10.1007/978-0-387-28668-6_7

    Book  Google Scholar 

  16. V. Ya. Shur, Handbook of Advanced Dielectric, Piezoelectric, and Ferroelectric Materials: Synthesis, Characterization and Applications, Ed. by G.-Z. Ye (Woodhead, Cambridge, 2008), p. 622.

    Google Scholar 

  17. V. Gopalan and T. E. Mitchell, J. Appl. Phys. 83, 941 (1998). https://doi.org/10.1063/1.366782

    Article  ADS  Google Scholar 

  18. V. Ya. Shur, A. I. Lobov, A. G. Shur, et al., Appl. Phys. Lett. 87, 022905 (2005). https://doi.org/10.1063/1.1993769

  19. D. O. Alikin, A. V. Ievlev, A. P. Turygin, et al., Appl. Phys. Lett. 106, 182902 (2015). https://doi.org/10.1063/1.4919872

  20. V. G. Zalessky and S. O. Fregatov, Phys. B. Condens. Matter 371, 158 (2006). https://doi.org/10.1016/j.physb.2005.10.097

    Article  ADS  Google Scholar 

  21. L. S. Kokhanchik, M. V. Borodin, S. M. Shandarov, et al., Phys. Solid State 52, 1722 (2010). https://doi.org/10.1134/S106378341008024X

    Article  ADS  Google Scholar 

  22. T. R. Volk, L. S. Kokhanchik, R. V. Gainutdinov, et al., Ferroelectrics 500, 129 (2016). https://doi.org/10.1080/00150193.2016.1214527

    Article  ADS  Google Scholar 

  23. A. V. Ievlev, D. O. Alikin, A. N. Morozovska, et al., ACS Nano 9, 769 (2015). https://doi.org/10.1021/nn506268g

    Article  Google Scholar 

  24. A. P. Turygin, D. O. Alikin, Yu. M. Alikin, et al., Materials 10, 1143 (2017). https://doi.org/10.3390/ma10101143

    Article  ADS  Google Scholar 

  25. M. Lilienblum and E. Soergel, J. Appl. Phys. 110, 052018 (2011). https://doi.org/10.1063/1.3623775

  26. S. Bühlmann, E. Colla, and P. Muralt, Phys. Rev. B 72, 214120 (2005). https://doi.org/10.1103/PhysRevB.72.214120

  27. A. P. Turygin, D. O. Alikin, M. S. Kosobokov, et al., ACS Appl. Mater. Interfaces 10, 36211 (2018). https://doi.org/10.1021/acsami.8b10220

    Article  Google Scholar 

  28. A. V. Ievlev, A. N. Morozovska, E. A. Eliseev, et al., Nat. Commun. 5, 4545 (2014). https://doi.org/10.1038/ncomms5545

    Article  ADS  Google Scholar 

  29. Y. Kim, S. Bühlmann, S. Hong, et al., Appl. Phys. Lett. 90, 072910 (2007). https://doi.org/10.1063/1.2679902

  30. M. Abplanalp, J. Fousek, and P. Günter, Phys. Rev. Lett. 86, 5799 (2001). https://doi.org/10.1103/PhysRevLett.86.5799

    Article  ADS  Google Scholar 

  31. A. V. Ievlev, A. N. Morozovska, V. Ya. Shur, et al., Phys. Rev. B 91, 214109 (2015). https://doi.org/10.1103/PhysRevB.91.214109

  32. V. Ya. Shur, E. L. Rumyantsev, E. V. Nikolaeva, et al., Appl. Phys. Lett. 76, 143 (2000). https://doi.org/10.1063/1.125683

    Article  ADS  Google Scholar 

  33. V. Ya. Shur, E. L. Rumyantsev, R. G. Batchko, et al., Phys. Solid State 41, 1681 (1999). https://doi.org/10.1134/1.1131068

    Article  ADS  Google Scholar 

  34. M. Muller, E. Soergel, and K. Buse, Opt. Lett. 28, 2515 (2003). https://doi.org/10.1134/1.1131068

    Article  ADS  Google Scholar 

  35. M. Molotskii, A. Agronin, P. Urenski, et al., Phys. Rev. Lett. 90, 107601 (2003). https://doi.org/10.1103/PhysRevLett.90.107601

  36. M. Molotskii, Y. Rosenwaks, and G. Rosenman, Annu. Rev. Mater. Res. 37, 271 (2007). https://doi.org/10.1146/annurev.matsci.37.052506.084223

    Article  ADS  Google Scholar 

  37. V. Ya. Shur, E. L. Rumyantsev, E. V. Nikolaeva, et al., Appl. Phys. Lett. 77, 3636 (2000). https://doi.org/10.1063/1.1329327

    Article  ADS  Google Scholar 

  38. T. Sluka, A. K. Tagantsev, P. Bednyakov, et al., Nat. Commun. 4, 1808 (2013). https://doi.org/10.1038/ncomms2839

    Article  ADS  Google Scholar 

  39. M. P. Campbell, J. P. V. McConville, R. G. P. McQuaid, et al., Nat. Commun. 7, 13764 (2016). https://doi.org/10.1038/ncomms13764

    Article  ADS  Google Scholar 

  40. A. A. Esin, A. R. Akhmatkhanov, and V. Ya. Shur, Appl. Phys. Lett. 114, 092901 (2019). https://doi.org/10.1063/1.5079478

  41. N. A. Pertsev and A. L. Kholkin, Phys. Rev. B 88, 174109 (2013). https://doi.org/10.1103/PhysRevB.88.174109

  42. A. Agronin, M. Molotskii, Y. Rosenwaks, et al., J. Appl. Phys. 99, 104102 (2006). https://doi.org/10.1063/1.2197264

  43. V. Ya. Shur, A. V. Ievlev, E. V. Nikolaeva, et al., J. Appl. Phys. 110, 052017 (2011). https://doi.org/10.1063/1.3624798

  44. V. Ya. Shur, Nucleation Theory and Applications, Ed. by J. W. P. Schmelzer (Wiley-VCH, Weinheim, 2005), p. 178. https://doi.org/10.1002/3527604790.ch6

    Book  Google Scholar 

  45. V. Ya. Shur, J. Mater. Sci. 41, 199 (2006). https://doi.org/10.1007/s10853-005-6065-7

    Article  ADS  Google Scholar 

  46. A. Agronin, M. Molotskii, Y. Rosenwaks, et al., J. Appl. Phys. 99, 104102 (2006). https://doi.org/10.1063/1.2197264

  47. E. D. Greshnyakov, A. P. Turygin, V. I. Pryakhina, et al., J. Appl. Phys. 131, 214103 (2022). https://doi.org/10.1063/5.0093200

  48. E. Fatuzzo and W. J. Merz, Ferroelectricity (North-Holland, Amsterdam, 1967), p. 289.

    Google Scholar 

  49. R. C. Miller and G. Weinreich, Phys. Rev. 117, 1460 (1960). https://doi.org/10.1103/PhysRev.117.1460

    Article  ADS  Google Scholar 

  50. J. W. Cahn, Acta Metall. 8, 554 (1960). https://doi.org/10.1016/0001-6160(60)90110-3

    Article  Google Scholar 

  51. V. Ya. Shur, Ferroelectric Thin Films: Synthesis and Basic Properties, Ed. by C. A. Paz de Araujo (Gordon and Breach, Amsterdam, 1996), p. 153.

    Google Scholar 

  52. N. Marwan, M. C. Romano, M. Thiel, et al., Phys. Rep. 438, 237 (2007). https://doi.org/10.1016/j.physrep.2006.11.001

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (grant no. 19-12-00210) using equipment of the Ural Center for Collective Use “Modern Nanotechnologies” of the Ural Federal University (reg. no. 2968), supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 075-15-2021-677).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Shur.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Dedicated to the memory of L.A. Shuvalov

Translated by Yu. Sin’kov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shur, V.Y., Pelegova, E.V., Turygin, A.P. et al. Growth of Ferroelectric Domains in Polar Direction. Crystallogr. Rep. 68, 756–764 (2023). https://doi.org/10.1134/S1063774523600588

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774523600588

Navigation