Skip to main content
Log in

X-Ray Phase-Contrast Microscope: Theory and Computer Experiment

  • DIFFRACTION AND SCATTERING OF IONIZING RADIATIONS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

A new method of X-ray microscopy using synchrotron radiation is theoretically analyzed. The method is based on the concepts of near-field phase contrast and nanofocusing using a planar compound refractive lens, which forms a secondary source with a small transverse size at a short distance from the sample. A computer experiment on imaging a two-dimensional photonic crystal with a period of 0.5 µm has been carried out. A universal program has been developed for carrying out computer experiments in the field of coherent X-ray optics. It is shown that the method proposed is characterized by high resolution, locality, and large luminosity; it is also weakly sensitive to the transverse size of a real synchrotron radiation source. The experimental setup may be rather compact and provide image magnification by a factor of more than 100.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Snigirev, I. Snigireva, V. Kohn, et al., Rev. Sci. Instrum. 66, 5486 (1995).

    Article  ADS  Google Scholar 

  2. A. Snigirev, V. Kohn, I. Snigireva, et al., Nature 384, 49 (1996).

    Article  ADS  Google Scholar 

  3. T. S. Argunova and V. G. Kohn, Usp. Fiz. Nauk 189, 643 (2019). https://doi.org/10.3367/UFNr.2018.06.038371

    Article  Google Scholar 

  4. P. A. Prosekov, V. L. Nosik, and A. E. Blagov, Crystallogr. Rep. 66, 867 (2021).

    Article  ADS  Google Scholar 

  5. A. Bosak, I. Snigireva, K. S. Napolskii, et al., Adv. Mater. 22, 3256 (2010). https://doi.org/10.1002/adma.201000173

    Article  Google Scholar 

  6. V. G. Kohn and N. V. Tsvigun, Crystallogr. Rep. 59, 1 (2014).

    Article  ADS  Google Scholar 

  7. V. Kohn, I. Snigireva, and A. Snigirev, J. Synchrotron Radiat. 21, 729 (2014). https://doi.org/10.1107/S160057751401056X

    Article  Google Scholar 

  8. V. G. Kohn, J. Synchrotron Radiat. 25, 425 (2018). https://doi.org/10.1107/S1600576717018490

    Article  Google Scholar 

  9. C. G. Schroer, M. Kuhlmann, U. T. Hunger, et al., Appl. Phys. Lett. 82, 1485 (2003). https://doi.org/10.1063/1.1556960

    Article  ADS  Google Scholar 

  10. C. G. Schroer, O. Kurapova, J. Patommel, et al., Appl. Phys. Lett. 87, 124103 (2005). https://doi.org/10.1063/1.2053350

  11. A. Snigirev, I. Snigireva, V. Kohn, et al., Phys. Rev. Lett. 103, 064801 (2009). https://doi.org/10.1103/PhysRevLett.103.064801

  12. V. G. Kohn, Pis’ma Zh. Eksp. Teor. Fiz. 76, 701 (2002).

    Google Scholar 

  13. V. G. Kohn, Zh. Eksp. Teor. Fiz. 124, 224 (2003).

    Google Scholar 

  14. V. G. Kohn and M. S. Folomeshkin, J. Synchrotron Radiat. 28, 419 (2021). https://doi.org/10.1107/S1600577520016495

    Article  Google Scholar 

  15. V. G. Kohn, J. Synchrotron Radiat. 29, 615 (2022). https://doi.org/10.1107/S1600577522001345

    Article  Google Scholar 

  16. V. G. Kohn and A. Kazimirov, Acta Crystallogr. A 68, 331 (2012). https://doi.org/10.1107/S0108767312012305

    Article  Google Scholar 

  17. V. Kohn, I. Snigireva, and A. Snigirev, Phys. Rev. Lett. 85, 2745 (2000).

    Article  ADS  Google Scholar 

  18. http://kohnvict.ucoz.ru/acl/acl.htm

  19. http://kohnvict.ucoz.ru/jsp/1-crlpar.htm

  20. J. W. Cooley and J. W. Tukey, Math. Comp. 19, 297 (1965).

    Article  MathSciNet  Google Scholar 

  21. V. G. Kohn, J. Surface Investigation 3 (3), 358 (2009).

  22. V. G. Kohn, J. Synchrotron Radiat. 19, 84 (2012). https://doi.org/10.1107/S0909049511045778

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 19-29-12043mk, in the part concerning the development of the computer program and by the Ministry of Science and Higher Education of the Russian Federation (grant no. 075-15-2021-1362) in the part of carrying out of a computer experiment and analysis of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Kohn.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohn, V.G. X-Ray Phase-Contrast Microscope: Theory and Computer Experiment. Crystallogr. Rep. 67, 826–832 (2022). https://doi.org/10.1134/S106377452206013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377452206013X

Navigation