Skip to main content
Log in

Anisotropy of High-Temperature Superconductivity in the (100) Plane of YBa2Cu3O7 Film

  • SURFACE AND THIN FILMS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

A film of high-temperature superconductor (HTSC) YBa2Cu3O7 has been grown on the (100) crystallographic plane of SrLaGaO4 crystal using pulse laser deposition. An X-ray diffraction (XRD) analysis has shown that this film is single-crystal, single-domain, and oriented in the (100) plane. The superconducting transition occurs at 88.8 K and has a width of 1.6 K. Measurements of the temperature dependence of electrical resistance in these films revealed a significant anisotropy of superconductivity in the (100) plane. Due to this specific feature, the critical superconducting-transition temperature, found by measuring the temperature dependence of resistance in the film plane oriented parallel to the CuO planes, exceeded the corresponding value obtained by the same measurement in the direction perpendicular to these planes by 2 K. In addition, it is revealed experimentally that the normal resistance in the former case is smaller than in the latter case by a factor of about 400.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. G. Bednorz and K. A. Muller, Z. Phys. B 64, 189 (1986). https://doi.org/10.1007/BF01303701

    Article  ADS  Google Scholar 

  2. J. G. Bednorz and K. Alex, Rev. Mod. Phys. 60 (3), 585 (1988). https://doi.org/10.1103/RevModPhys.60.585

    Article  ADS  Google Scholar 

  3. D. Dimos, P. Chaudhari, and J. Mannhart, Phys. Rev. B 41, 4038 (1990). https://doi.org/10.1103/PhysRevB.41.4038

    Article  ADS  Google Scholar 

  4. G. Brorsson, E. Olsson, Z. G. Ivanov, et al., J. Appl. Phys. 75 (12), 7958 (1994). https://doi.org/10.1063/1.356557

    Article  ADS  Google Scholar 

  5. Y. Shingai, M. Mukaida, A. Ichinose, et al., IEEE Trans. Appl. Supercond. 15 (2), 2935 (2005).

    Article  ADS  Google Scholar 

  6. S. Hontu, N. Mukai, J. Ishii, et al., Appl. Phys. Lett. 61 (9), 1134 (1992).

    Article  ADS  Google Scholar 

  7. M. Mukaida and S. Miyazawa, Appl. Phys. Lett. 63 (7), 999 (1993). https://doi.org/10.1063/1.109819

    Article  ADS  Google Scholar 

  8. Y. Suzuki, D. Lew, A. F. Marshall, et al., Phys. Rev. B 48 (14), 10642 (1997).

    Article  ADS  Google Scholar 

  9. M. Mukaida, Jpn. J. Appl. Phys. B 36 (6), L767 (1997).

    Article  ADS  Google Scholar 

  10. D. H. Ha, Y. K. Park, and J. C. Park, Jpn. J. Appl. Phys. B 33 (11), L1588 (1994).

    Article  ADS  Google Scholar 

  11. G. Y. Sung and J. D. Suh, Appl. Phys. Lett. 67 (8), 1145 (1995).

    Article  ADS  Google Scholar 

  12. S. Saini, M. Takamura, M. Mukaida, et al., IEEE Trans. Appl. Supercond. 21 (3), 602 (2011).

    Article  ADS  Google Scholar 

  13. T. K. Worthington, W. J. Dinger, and T. R. Gallagher, Phys. Rev. Lett. 59, 1160 (1987).

    Article  ADS  Google Scholar 

  14. P. J. Wu, D. N. Zheng, L. Chen, et al., Supercond. Sci. Technol. 14, 229 (2001).

    Article  ADS  Google Scholar 

  15. E. A. Stepantsov, R. Arpaiya, and F. Lombardi, Crystallogr. Rep. 60 (3), 393 (2015).

    Article  ADS  Google Scholar 

  16. E. A. Stepantsov, R. Arpaiya, and F. Lombardi, Crystallogr. Rep. 62 (1), 127 (2017).

    Article  ADS  Google Scholar 

  17. R. Baghdadi, R. Arpaia, E. A. Stepantsov, et al., Phys. Rev. B 95, 184505 (2017). https://doi.org/10.1103/PhysRevB.95.184505

  18. Z. G. Ivanov, E. A. Stepantsov, F. Wenger, et al., Czech. J. Phys. 46 (S3), 1311 (1996).

    Article  Google Scholar 

  19. Z. G. Ivanov, E. A. Stepantsov, T. Claeson, et al., Phys. Rev. B 57 (1), 602 (1998).

    Article  ADS  Google Scholar 

  20. V. N. Zverev, D. V. Shovkun, and I. G. Naumenko, Pis’ma Zh. Eksp. Teor. Fiz. 68 (4), 309 (1998). https://doi.org/10.1134/1.567869

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to A.A. Lomov, the Chief Researcher of the Valiev Institute of Physics and Technology of the Russian Academy of Sciences, for providing access to the equipment of the institute for experiments with deposition of thin films and their lithography and to R. Arpaia, a Doctor of Physics and Mathematics, for the help in carrying out electrical measurements.

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation within a State assignment for the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Stepantsov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepantsov, E.A. Anisotropy of High-Temperature Superconductivity in the (100) Plane of YBa2Cu3O7 Film. Crystallogr. Rep. 67, 436–440 (2022). https://doi.org/10.1134/S1063774522030208

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774522030208

Navigation