Skip to main content
Log in

Structure and Physicochemical Properties of Three Structural Forms of Organic Luminophore 2-((2-Benzo[d]thiazol-2-yl)phenyl)carbamoyl)benzoic Acid

  • STRUCTURE OF ORGANIC COMPOUNDS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

It has been established by single-crystal X-ray diffraction (XRD), differential scanning calorimetry, and luminescence spectroscopy that the color differences in the fluorescence of a 2-((2-(benzo[d]thiazol-2-yl)phenyl)carbamoyl)benzoic acid (I) luminophore is caused by the existence of its three structural forms, two of which are different crystalline modifications and one is amorphous. Under the UV irradiation, green, yellow, and orange glow of the compound is observed. The transition from the form with green glow to the form with yellow glow, as well as from the form with yellow glow to the form with orange glow, is a melt–crystal2 type phase transition rather than a crystal–crystal phase transition. In crystal structures, the intramolecular hydrogen bond weakens under the action of the intermolecular hydrogen bond. The stronger the newly formed bond, the weaker the intramolecular hydrogen bond is. The weakening of the intramolecular hydrogen bond is consistent with the red shift of the luminophore emission band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. L. G. Kuz’mina, S. Yu. Salykin, S. V. Kulagin, et al., Crystallogr. Rep. 3 (3), 413 (2021).

    Article  ADS  Google Scholar 

  2. B. M. Krasovitskii and B. M. Bolotin, Organic Luminescent Materials (VCH Publishers, Weinheim, 1989).

    Google Scholar 

  3. Bruker, APEX2, SADABS, and SAINT (Bruker AXS Inc. Madison, Wiskonsi, USA, 2008).

  4. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, et al., J. Appl. Crystallogr. 42, 339 (2009).

    Article  Google Scholar 

  5. L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, et al., Acta Crystallogr. A 71, 59 (2015). https://doi.org/10.1107/S2053273314027685

    Article  Google Scholar 

  6. C. R. Groon and F. H. Allen, Angew. Chem. 53, 662 (2014).

    Article  Google Scholar 

  7. D. Gobel, P. Rusch, D. Duvinage, et al., Chem. Commun. 56, 15430 (2020). https://doi.org/10.1039/DOCC05780K.57

    Article  Google Scholar 

  8. M. Bakthadoss and R. Selvakumar, J. Org. Chem. 81, 3391 (2016).

    Article  Google Scholar 

  9. D. Lakshmanan, R. M. Raj, R. Selvakumar, et al., Acta Crystallogr. E 67, o2259 (2011). https://doi.org/10.1107/S160053681103114X

    Article  Google Scholar 

  10. H. Kargar, R. Kia, Z. Sharafi, et al., Acta Crystallogr. E 68, o2628 (2012). https://doi.org/10.1107/S1600536812033879

    Article  Google Scholar 

  11. M. Tanimura, N. Watanabe, H. K. Ijuin, and M. Matsumoto, J. Org. Chem. 77, 4725 (2012). https://doi.org/10.1021/jo300417e

    Article  Google Scholar 

  12. N. P. Thekkeppat, M. Lakshmipathi, A. S. Jalilov, et al., Cryst. Growth Des. 20 (6), 3937 (2020).

    Article  Google Scholar 

  13. R. Wang, J. Ding, and Y. Zhang, New J. Chem. 43, 9152 (2019). https://doi.org/10.1039/c9nj01685f

    Article  Google Scholar 

  14. T. K. Venkatachalam, G. K. Pierens, P. V. Bernhardt, and D. C. Reutens, Magn. Reson. Chem. 53, 448 (2015). https://doi.org/10.1002/mrc.4228

    Article  Google Scholar 

  15. Y. Chen, Y. Fang, H. Gu, et al., ACS Appl. Mater. Interfaces 12, 55094 (2020). https://doi.org/10.2147/NDT.S308360

    Article  Google Scholar 

  16. M. Singh, Vaishali, A. K. Paul, and V. Singh, Org. Biomol. Chem. 18, 4459 (2020).

    Article  Google Scholar 

  17. D. Liu, Q. Ding, Y, Zh, and Y, Org Lett. 21 (8), 2523 (2019). https://doi.org/10.1021/acs.orglett.9b00115

    Article  MathSciNet  Google Scholar 

  18. A. A. Al-Amiery, A. A. Al-Temimi, A. A. H. Kadhum, et al., Zh. Strukt Khim. (Russ). 54, 593 (2013).

    Google Scholar 

  19. M. Tanimura, N. Watanabe, H. K. Ijuin, and M. Matsumoto, J. Org. Chem. 77, 4725 (2012). https://doi.org/10.1021/jo300417e

    Article  Google Scholar 

  20. S. Goswami, A. K. Das, A. Manna, et al., Tetrahedron Lett. 55, 2633 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. G. Kuz’mina or B. M. Bolotin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuz’mina, L.G., Bezzubov, S.I., Kulagin, S.V. et al. Structure and Physicochemical Properties of Three Structural Forms of Organic Luminophore 2-((2-Benzo[d]thiazol-2-yl)phenyl)carbamoyl)benzoic Acid. Crystallogr. Rep. 67, 566–574 (2022). https://doi.org/10.1134/S1063774522030130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774522030130

Navigation