Skip to main content
Log in

Growth of YBa2Cu3O7 Films with a Packet of Parallel Grain Boundaries Spaced by Nanometer Distances

  • SURFACE AND THIN FILMS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Substrates with crystallographic orientation (100), consisting of (100)CeO–{(100)SrTiO3–(100)CeO2} × 4 epitaxial multilayer films oriented perpendicular to the surface, have been obtained by solid-phase bonding of Y-ZrO2 fianite crystals. The CeO2 and SrTiO3 layers were exposed on the film surface by their (100) planes and the (110) faces, respectively. All formed layers were 40 nm thick. Films of high-temperature superconductor (HTSC) YBa2Cu3O7 were epitaxially grows on the substrates; a packet of parallel grain boundaries, oriented perpendicular to the surface, was formed as a result of their inheritance from the {SrTiO3–CeO2} boundaries of the multilayer internal film. The YBa2Cu3O7 film is oriented by its (001) plane and (103) face above the CeO2 and SrTiO3 regions, respectively. Thus, a packet of eight parallel 45° grain boundaries, spaced by 40 nm, is formed in the YBa2Cu3O7 film. The current–voltage characteristic of a lithographic straight-line bridge in the HTSC film intersecting this packet contains eight steps, which correspond to eight bicrystal Josephson junctions, spaced by 40 nm and connected in series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Z. G. Ivanov, P. A. Nilsson, D. Winkler, et al., Appl. Phys. Lett. 59 (23), 3030 (1991). https://doi.org/10.1063/1.105783

    Article  ADS  Google Scholar 

  2. G. Brorsson, E. Olsson, Z. G. Ivanov, et al., J. Appl. Phys. 75 (12), 7958 (1994). https://doi.org/10.1063/1.356557

    Article  ADS  Google Scholar 

  3. J. A. Alarco, E. Olsson, Z. G. Ivanov, et al., Physica C 247, 263 (1995). https://doi.org/10.1016/0921-4534(95)00209-X

    Article  ADS  Google Scholar 

  4. P. Chaudhari, J. Mannhart, D. Dimos, et al., Phys. Rev. Lett. 60, 1653 (1988). https://doi.org/10.1103/PhysRevLett.60.1653

    Article  ADS  Google Scholar 

  5. H. K. Olsson, P. A. Nilsson, Z. G. Ivanov, et al., Appl. Phys. Lett. 61 (7), 861 (1992). https://doi.org/10.1063/1.107769

    Article  ADS  Google Scholar 

  6. H. K. Olsson, R. H. Koch, P. A. Nilsson, and E. A. Stepantsov, IEEE Trans. Appl. Supercond. 3 (1), 2426 (1993). https://doi.org/10.1109/77.233945

    Article  ADS  Google Scholar 

  7. D. Winkler, Y. M. Zhang, P. A. Nilsson, et al., Physica B 194–196, 1771 (1994). https://doi.org/10.1016/0921-4526(94)91385-4

    Article  ADS  Google Scholar 

  8. D. Winkler, Y. M. Zhang, P. A. Nilsson, et al., Phys. Rev. Lett. 72 (8), 1260 (1994). https://doi.org/10.1103/PhysRevLett.72.1260

    Article  ADS  Google Scholar 

  9. Z. G. Ivanov, V. K. Kaplunenko, E. A. Stepantsov, et al., Supercond. Sci. Technol. 7, 239 (1994). https://doi.org/10.1088/0953-2048/7/5/002

    Article  ADS  Google Scholar 

  10. V. Kaplunenko, Z. Ivanov, A. Bogdanov, et al., IEEE Trans. Appl. Supercond. 5 (2), 2835 (1995). https://doi.org/10.1109/77.403182

    Article  ADS  Google Scholar 

  11. V. K. Kaplunenko, Z. G. Ivanov, E. A. Stepantsov, et al., Appl. Phys. Lett. 67 (1), 138 (1995). https://doi.org/10.1063/1.115472

    Article  ADS  Google Scholar 

  12. V. K. Kaplunenko, Z. G. Ivanov, E. A. Stepantsov, et al., Appl. Phys. Lett. 67 (2), 282 (1995). https://doi.org/10.1063/1.114783

    Article  ADS  Google Scholar 

  13. E. A. Stepantsov and M. A. Tarasov, Nanotekhnol.: Razrab. Primen.–XXI Vek 11 (4), 26 (2019). https://doi.org/10.18127/j22250980-201904-04

    Article  Google Scholar 

  14. E. A. Stepantsov, Crystallogr. Rep. 65 (6), 1008 (2020).

    Article  ADS  Google Scholar 

  15. V. V. Roddatis, A. L. Vasiliev, E. A. Stepantsov, et al., Thin Solid Films 333, 207 (1998). https://doi.org/10.1016/S0040-6090(98)00559-8

    Article  ADS  Google Scholar 

  16. V. V. Roddatis, E. A. Stepantsov, and N. A. Kiselev, J. Cryst. Growth 220, 515 (2000). https://doi.org/10.1016/S0022-0248(00)00880-0

    Article  ADS  Google Scholar 

  17. A. L. Vasiliev, E. A. Stepantsov, Z. G. Ivanov, et al., Appl. Surf. Sci. 119, 215 (1997). https://doi.org/10.1016/S0169-4332(97)00197-9

    Article  ADS  Google Scholar 

  18. P. A. Nilsson, Z. G. Ivanov, D. Winkler, et al., Physica C 185–189, 2597 (1991). https://doi.org/10.1016/0921-4534(91)91422-Z

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to the Chief Researcher of the Valiev Institute of Physics and Technology of the Russian Academy of Sciences, A.A. Lomov, for providing access to the equipment of the institute for experiments with deposition of thin films, their lithography, and electrical measurements at 4 K.

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation within a State assignment for the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Stepantsov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepantsov, E.A. Growth of YBa2Cu3O7 Films with a Packet of Parallel Grain Boundaries Spaced by Nanometer Distances. Crystallogr. Rep. 67, 260–264 (2022). https://doi.org/10.1134/S1063774522020201

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774522020201

Navigation