Skip to main content
Log in

Compact Neutron Sources for Condensed-Matter Physics in Russia and Abroad: State of Affairs and Prospects

  • REVIEWS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

A concept of a project of compact neutron source (CNS), dedicated for academical research and industrial application (DARIA), is presented. Several versions of neutron source optimization aimed at increasing the neutron flux and luminosity on a sample are considered. A new approach aimed at designing CNS DARIA is formulated: from a sample to a proton source. Thus, with allowance for the real physical and technical limitations, all CNS elements (proton accelerator, target–moderator–reflector (TMR) assembly, moderators, and neutron stations) are optimized as a whole, and each channel leading to the neutron scattering system is optimized separately as well. The complex of neutron systems includes an inverse-geometry spectrometer, an epithermal diffractometer, a system of small-angle neutron scattering (SANS), and a multispectral diffractometer. The results of calculating the TMR assembly are presented. Starting points for further optimization are established. The advantages and drawbacks of pulsed and cw linear accelerators are described, and the optimal parameters of proton accelerator for CNS DARIA are chosen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Reactor Institute TU Delft Website. http://www.tnw.tudelft.nl/en/cooperation/facilities/reactor- instituut-delft/.

  2. ESS website: http://europeanspallationsource.se/.

  3. JINR Laboratory of Neutron Physics (Dubna) Website. http://flnph.jinr.ru/ru/.

  4. S. F. Sidorkin and E. A. Koptelov, Poverkhn.: Rentgenovskie, Sinkhrotronnnye Neitr. Issled., No. 6, 97 (2013).

  5. Reactor PIK (PNPI NRC KI, Gatchina) Website. http://www.pnpi.spb.ru/win/facil/pik.htm.

  6. Institute Laue–Langevin Website. https://www.ill.eu/.

  7. C. Andreani, C. K. Loong, and G. Prete, Eur. Phys. J. Plus. 131, 217 (2016). https://doi.org/10.1140/epjp/i2016-16217-1

    Article  Google Scholar 

  8. C. M. Lavelle, D. V. Baxter, A. Bogdanov, et al., Nucl. Instrum. Methods Phys. Res. A 587, 324 (2008). https://doi.org/10.1016/j.nima.2007.12.044

    Article  ADS  Google Scholar 

  9. J. Wei, H. B. Chen, W. H. Huang, et al., Particle Accelerator Conference TU6PFP035, 2009. https://accelconf.web.cern.ch/PAC2009/papers/tu6pfp035.pdf

  10. J. Wei, Y. J. Bai, J. C. Cai, et al., Proc. IPAC2010 10, 633 (2010).

  11. T. Kubo, M. Ishihara, N. Inabe, et al., Nucl. Instrum. Methods Phys. Res. B 70 (1–4), 309 (1992). https://doi.org/10.1016/0168-583x(92)95947-p

    Article  ADS  Google Scholar 

  12. U. Rucker, T. Cronert, J. Voigt, et al., Eur. Phys. J. Plus. 131 (1), 19 (2016). https://doi.org/10.1140/epjp/i2016-16019-5

    Article  Google Scholar 

  13. Rutherford Appleton Laboratory Website. http://www.isis.stfc.ac.uk/.

  14. P. A. Seeger, L. L. Daemen, and J. Z. Larese, Nucl. Instrum. Methods Phys. Res. A 604 (3), 719 (2009). https://doi.org/10.1016/j.nima.2009.03.204

    Article  ADS  Google Scholar 

  15. R. S. Pinna, S. Rudić, S. F. Parker, et al., Nucl. Instrum. Methods Phys. Res. A 896, 68 (2018). https://doi.org/10.1016/j.nima.2018.04.009

    Article  ADS  Google Scholar 

  16. NIST Neutron News Cross Section Table 3 (3), 29 (1992);

  17. Brookhaven Database NNDC. https://www.bnl.gov/NST/NNDC.php

  18. K. Kuwahara, S. Sugiyama, K. Iwasa, et al., Appl. Phys. A 74, 302 (2002). https://doi.org/10.1007/s003390201399

    Article  Google Scholar 

  19. T. Yokoo, M. Arai, K. Kuwahara, et al., Neutron News 14 (4), 18 (2010). https://doi.org/10.1080/00323910490970780

    Article  Google Scholar 

  20. R. Pynn, LANSCE (Los Alamos Neutron Science Center) Neutron Scattering a PRIMER (Los Alamos, 1990), p. 33.

  21. G. Zaccai and B. Jacrot, Annu. Rev. Biophys. Bioeng. 12 (1), 139 (1983). https://doi.org/10.1146/annurev.bb.12.060183.001035

    Article  Google Scholar 

  22. D. F. R. Mildner and J. M. Carpenter, J. Appl. Crystallogr. 17 (4), 249 (1984). https://doi.org/10.1107/S0021889884011468

    Article  Google Scholar 

  23. S. V. Grigor’ev, K. A. Pshenichnyi, I. A. Baraban, et al., JETP Lett. 110 793 (12), (2019). https://doi.org/10.1134/S0370274X19240068

  24. B. Jeon, J. Kim, E. Lee, et al., Nucl. Eng. Technol. 52 (3), 633 (2019). https://doi.org/10.1016/j.net.2019.08.019

    Article  Google Scholar 

  25. C. M. Lavelle, The Neutronic Design and Performance of the Indiana University Cyclotron Facility (IUCF) Low Energy Neutron Source (LENS) (2007).

    Google Scholar 

  26. X. Wang, C. K. Loong, X. Guan, and T. Du, Phys. Proc. 60, 97 (2014). https://doi.org/10.1016/j.phpro.2014.11.015

    Article  Google Scholar 

  27. IPSN Website. www.aai.anl.gov/history/project_pages/ipns.html.

  28. LANSCE Website. http://lansce.lanl.gov/.

  29. ISIS Website. http://www.isis.stfc.ac.uk/.

  30. SNS Website. http://neutrons.ornl.gov/sns.

  31. JPARC Website. http://j-parc.jp/index-e.html.

  32. V. L. Aksenov, V. D. Ananiev, G. G. Komyshev, et al., Phys. Part. Nucl. Lett. 14 (5), 788 (2017). https://doi.org/10.1134/S1547477117050028

    Article  Google Scholar 

  33. E. Fagotti, L. Antoniazzi, D. Bortolato, et al., Proc. IPAC2018, 2018, p. 29. https://doi.org/10.18429/JACoW-IPAC2018-THXGBF2

  34. N. Pichoff, D. Chirpaz-Cerbat, R. Cubizolles, et al., Proc. IPAC2018, 2018, p. 994. https://doi.org/10.18429/JACoW-IPAC2018-TUPAK015

  35. C. Wiesner, S. Alzubaidi, M. Droba, et al., Proc. IPAC2015, 2015, p. 1276. https://doi.org/10.18429/JACoW-IPAC2015-TUXB1

  36. A. Pisent, E. Fagotti, and P. Colautti, Proc. LINAC2014, 2014, p. 261. https://doi.org/10.18429/JACoW-LINAC2014-MOPP088

  37. T. Kulevoy, R. Fatkullin, A. Kozlov, et al., Proc. LINAC2018, 2018, p. 349. https://doi.org/10.18429/JACoW-LINAC2018-TUPO012

  38. IFMIF/EVEDA, Injector+LEBT Website. https://www.ifmif.org/?page_id155.

  39. R. Hollinger, W. Barth, L. Dahl, et al., Proc. LINAC2006, 2006, p. 232.

  40. W. D. Kilpatrick, Rev. Sci. Instrum. 28 (10), 824 (1957). https://doi.org/10.1063/1.1715731

    Article  ADS  Google Scholar 

  41. A. I. Balabin and G. N. Kropachev, Proc. EPAC1994, 1994, p. 1180.

  42. G. Kropachev, T. Kulevoy, and A. Sitnikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 13 (6), 1126 (2019). https://doi.org/10.1134/S1027451019060399

    Article  Google Scholar 

  43. A. Andreev and G. Parisi, Proc. PAC1993, 1993, p. 3124.

  44. P. N. Ostroumov, N. Bultman, M. Ikegami, et al., Proc. IPAC2018, 2018, p. 29. https://doi.org/10.18429/JACoW-IPAC2018-THYGBF4

  45. P. N. Ostroumov, Proc. LINAC2018, 2018. http://accelconf.web.cern.ch/AccelConf/linac2018/talks /tu2a02_talk.pdf.

  46. A. Pisent, M. Cavenago, P. Bezzon, et al., Proc. EPAC2000, 2000, p. 1702.

  47. V. Andreev, N. N. Alexeev, A. Kolomiets, et al., Proc. EPAC2010, 2010, p. 801. https://accelconf.web.cern.ch/IPAC10/papers/mopd052.pdf

  48. V. Koshelev, G. Kropachev, T. Kulevoy, et al., Proc. LINAC2016, 2016, p. 575. https://accelconf.web.cern.ch/linac2016/papers/tuplr050.pdf.

  49. ICIS2019 Website. https://icis2019.impcas.ac.cn/event/1/overview.

Download references

ACKNOWLEDGMENTS

We are grateful to E.S. Klement’ev, M.V. Bulavin, K.A. Mukhin, and many other researchers from the Immanuel Kant Baltic Federal University, JINR, ITEP NRC KI, and IPF RAS for the help in work and for supplying necessary materials.

Funding

This study was supported by the Russian Science Foundation (grant no. 19-12-00363).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Pavlov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlov, K.A., Konik, P.I., Kovalenko, N.A. et al. Compact Neutron Sources for Condensed-Matter Physics in Russia and Abroad: State of Affairs and Prospects. Crystallogr. Rep. 67, 3–17 (2022). https://doi.org/10.1134/S1063774522010096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774522010096

Navigation