Skip to main content
Log in

Crystal-Chemical Features of Apatite in Carbonatites of the Tomtor Deposit (The Republic of Sakha (Yakutia), Russia): X-Ray Diffraction and Vibrational Spectroscopy Data

  • REAL STRUCTURE OF CRYSTALS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

An analysis of a number of samples from the Tomtor deposit of Nb and rare-earth elements (Republic of Saha (Yakutia)) by X-ray diffractometry, IR spectroscopy, and Raman spectroscopy makes it possible to cover the structural organization of minerals and their components from the long-range to the mid- and short-range orders. The apatites present in the samples are characterized by a large variety of anion and cation substitutions (including rare-earth elements) in various structural sites. Raman microspectroscopy revealed some specific features, inherent in molecular biomarkers (specifically, a band due to double bonds –C=C– in the central part of the polyene chain of carotenoids, which characterize cyanobacteria associated with apatite), which is a direct proof of participation of microorganisms in the formation of apatites in rocks of this deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. V. Tolstov, N. P. Pokhilenko, and N. Yu. Samsonov, J. Sib. Fed. Univ.: Chem. 10, 125 (2017).

    Article  Google Scholar 

  2. J. C. Elliott, Structure and Chemistry of the Apatites and Other Calcium Orthophospatrs. Study in Inorganic Chemistry, Vol. 18 (Elsevier, Amsterdam, 1994).

    Google Scholar 

  3. T. N. Grigor’eva, G. A. Dubinina, T. N. Moroz, and N. A. Pal’chik, Tikhookean. Geol. 17, 59 (1998).

    Google Scholar 

  4. N. A. Pal’chik, T. Moroz, and T. N. Grigor’eva, J. Struct. Chem. 55 (4), 764 (2014).

    Article  Google Scholar 

  5. N. A. Pal’chik, T. N. Moroz, T. N. Grigor’eva, et al., Crystallogr. Rep. 62, 91 (2017).

    Article  ADS  Google Scholar 

  6. T. Moroz, H. G. M. Edwards, A. Pyryaev, et al., J. Raman Spectrosc. 51, 1885 (2020). https://doi.org/10.1002/jrs.5763

    Article  ADS  Google Scholar 

  7. M. J. Vieira, A. P. Pacheco, I. A. Pinho, et al., Environ. Technol. 22, 123 (2001). https://doi.org/10.1080/09593332208618298

    Article  Google Scholar 

  8. A. Alimova, A. Katz, N. Steiner, et al., Clays Clay Miner. 57, 205 (2009). https://doi.org/10.1346/CCMN.2009.0570207

    Article  ADS  Google Scholar 

  9. A. Yu. Rozanov, Soros. Obrazovat. Zh., No. 10, 63 (1999).

  10. N. A. Palchik, T. N. Moroz, and L. V. Miroshnichenko, Crystallogr. Rep. 63 (7), 1082 (2018). https://doi.org/10.1134/S1063774518070192

    Article  ADS  Google Scholar 

  11. Y. Wu, J. Zhang, L. Wang, et al., Ecol. Eng. 101, 162 (2017). https://doi.org/10.1016/j.ecoleng.2017.01.023

    Article  Google Scholar 

  12. B. Lian, Y. Chen, L. Zhu, et al., Earth Sci. Front. 15, 90 (2008). https://doi.org/10.1016/S1872-5791(09)60009-9

    Article  ADS  Google Scholar 

  13. S. Bernard, K. Benzerara, O. Beyssac, et al., Geochim. Cosmochim. Acta 74, 5054 (2010). https://doi.org/10.1016/j.gca.2010.06.011

    Article  ADS  Google Scholar 

  14. S. Bernard and D. Papineau, Elements 10, 435 (2014). https://doi.org/10.2113/gselements.10.6.435

    Article  Google Scholar 

  15. J. D. Schiffbauer, L. M. Yin, R. J. Bodnar, et al., Astrobiology 7, 684 (2007). https://doi.org/10.1089/ast.2006.0098

    Article  ADS  Google Scholar 

  16. Bacterial Paleontology, Ed. by A. Yu Rozanov (PIN RAN, Moscow, 2002).

    Google Scholar 

  17. S. I. Zhmur, S. M. Kravchenko, A. Yu. Rozanov, and E. A. Zhegallo, Dokl. Akad. Nauk 336, 372 (1994).

    Google Scholar 

  18. E. V. Lazareva, S. M. Zhmodik, N. L. Dobretsov, et al., Geol. Geofiz. 56, 1080 (2015). https://doi.org/10.15372/GiG20150603

    Article  Google Scholar 

  19. Yu. A. Bagdasarov, Geokhimiya, No. 9, 62 (1997).

    Google Scholar 

  20. Yu. A. Bagdasarov, Geol. Geofiz. 50 (10), 1178 (2009).

    Google Scholar 

  21. N. V. Vladykin, A. B. Kotov, A. S. Borisenko, et al., Dokl. Akad. Nauk 454, 195 (2014).

    Google Scholar 

  22. S. M. Kravchenko, A. Yu. Belyakov, and B. G. Pokrovskii, Geokhimiya, No. 3, 1094 (1992).

    Google Scholar 

  23. S. M. Kravchenko, G. Czamanske, and V. A. Fedorenko, Geochim. Int. 41 (6), 545 (2003).

    Google Scholar 

  24. A. V. Tolstov, Geol. Geofiz. 35, 91 (1994).

    Google Scholar 

  25. V. A. Ponomarchuk, N. L. Dobretsov, E. V. Lazareva, et al., Dokl. Earth Sci. 490, 33 (2020). https://doi.org/10.31857/S2686739720020115

    Article  Google Scholar 

  26. H. G. M. Edwards, C. D. Moody, S. E. J. Villar, and D. D. Wynn-Williams, Icarus 174, 560 (2005). https://doi.org/10.1016/j.icarus.2004.07.029

    Article  ADS  Google Scholar 

  27. H. G. M. Edwards, I. B. Hutchinson, R. Ingley, and J. Jelichka, Philos. Trans. R. Soc. A 372, 20140193 (2014). https://doi.org/10.1098/rsta.2014.0193

    Article  ADS  Google Scholar 

  28. V. E. De Oliveira, M. Miranda, M. C. S. Soares, et al., Spectrochim. Acta A 150, 373 (2015). https://doi.org/10.1016/j.saa.2015.05.044

    Article  Google Scholar 

  29. N. A. Pal’chik, T. N. Grigor’eva, V. N. Stolpovskaya, et al., Zh. Prikl. Khim. 70, 1591 (1997).

    Google Scholar 

  30. D. K. Arkhipenko and T. N. Moroz, Crystallogr. Rep. 42, 651 (1997).

    ADS  Google Scholar 

  31. N. A. Palchik, A. M. Gonchar, T. N. Grigorieva, et al., Chem. Sustainable Dev. 11, 389 (2003).

    Google Scholar 

  32. T. N. Moroz and D. K. Arkhipenko, Proc. of the Sixteenth Int. Conf. on Raman Spectroscopy, USA, 1998, p. 710.

  33. R. Reisfeld, M. Gaft, C. Panczer, et al., J. Lumin. 69, 343 (1996).

    Article  Google Scholar 

  34. T. N. Moroz, Mineralogy of Technogenesis-2011 (IMin UrO RAN, Miass, 2011) [in Russian], p. 94.

  35. H. De Maman Anzolin, N. Dani, M. V. D. Remus, et al., Braz. J. Geol. 49 (2), e20180092 (2019). https://doi.org/10.1590/2317-4889201920180092

    Article  Google Scholar 

  36. K. Sudarsanan and R. A. Young, Acta Crystallogr. B 25 (8), 1534 (1969). https://doi.org/10.1107/s0567740869004298

    Article  Google Scholar 

  37. D. Orobengoa, C. Capillas, M. I. Aroyo, and J. M. Perez-Mato, J. Appl. Crystallogr. 42, 820 (2009). https://doi.org/10.1107/S0021889803008690

    Article  Google Scholar 

  38. P. Comodi, Yu. Liu, and M. L. Frezzotti, Phys. Chem. Miner. 28, 225 (2001). https://doi.org/10.1007/s002690100155

    Article  ADS  Google Scholar 

  39. D. C. O’Shea, M. L. Bartlett, and R. A. Young, Arch. Oral Biol. 74, 995 (1974). https://doi.org/10.1016/0003-9969(74)90086-7

    Article  Google Scholar 

  40. D. M. Adams and I. R. Gardner, J. Chem. Soc., Dalton Trans. 1505 (1974). https://doi.org/10.1039/DT9740001505

  41. E. Balan, S. Delattre, D. Roche, et al., Phys. Chem. Miner. 38, 111 (2010). https://doi.org/10.1007/s00269-010-0388-x

    Article  ADS  Google Scholar 

  42. A. Shemesh, Geochim. Cosmochim. 54, 2433 (1990).

    Article  ADS  Google Scholar 

  43. E. Puceata, B. Reynard, and C. Lecuyer, Chem. Geol. 205, 83 (2004). https://doi.org/10.1016/j.chemgeo.2003.12.014

    Article  ADS  Google Scholar 

  44. A. Person, H. Bocherens, A. Mariotti, and M. Renard, Palaeogeogr. Palaeoclimatol. Palaeoecol. 126, 135 (1996). https://doi.org/10.1016/S0031-0182(97)88906-7

    Article  Google Scholar 

  45. S. C. Pinzaru, C. Muller, I. Brezestean, et al., Stud. UBB Phys. 61, 99 (2016).

    Google Scholar 

  46. M. J. Llansola-Portoles, A. A. Pascal, and B. Robert, J. R. Soc. Interface 14, 20170504 (2017). https://doi.org/10.1098/rsif.2017.0504

    Article  Google Scholar 

  47. J. C. Merlin, Pure Appl. Chem. 57, 785 (1985). https://doi.org/10.1351/pac198557050785

    Article  Google Scholar 

  48. J. P. Ceron-Carrasco, A. Bastida, J. Zuniga, et al., J. Phys. Chem. A 113, 9899 (2009). https://doi.org/10.1021/jp9037446

    Article  Google Scholar 

  49. C. K. Mann and T. J. Vickers, Appl. Spectrosc. 41, 427 (1987). https://doi.org/10.1366/0003702874449075

    Article  ADS  Google Scholar 

  50. C. M. MacRae and N. C. Wilson, Microsc. Microanal. 14, 184 (2008).

    Article  ADS  Google Scholar 

  51. M. Czaja, S. Bodył, R. Lisiecki, et al., Phys. Chem. Miner. 37, 425 (2011). https://doi.org/10.1007/s00269-009344-9

    Article  ADS  Google Scholar 

  52. M. Gaft, R. Reisfeld, and G. Panczer, Luminescence Spectroscopy of Minerals and Materials (Springer, Berlin, 2005).

    Google Scholar 

  53. N. A. Kamennaya, C. M. Ajo-Franklin, T. Northen, and C. Jansson, Minerals 2, 338 (2012). https://doi.org/10.3390/min2040338

    Article  ADS  Google Scholar 

  54. W. Altermann, J. Kazmierczak, A. Oren, and D. T. Wright, Geobiology 4, 147 (2006).

    Article  Google Scholar 

  55. M. Obst, B. Wehrli, and M. Dittrich, Geobiology 7, 324 (2009). https://doi.org/10.1111/j.1472-4669.2009.00200.x

    Article  Google Scholar 

  56. E. Couradeau, K. Benzerara, E. Gerard, et al., Science 336, 459 (2012). https://doi.org/10.1126/science.1216171

    Article  ADS  Google Scholar 

  57. K. Benzerara, F. Skouri-Panet, J. Li, et al., Proc. Nat. Acad. Sci. U.S.A. 111, 10933 (2014). https://doi.org/10.1073/pnas.1403510111

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The instrumental studies were performed in the Shared Research Center of Multielement and Isotopic Studies of the Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences.

Funding

This study was performed within a State assignment for the Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences and supported by the Russian Science Foundation (project no. 18-17-00120) in the part concerning the obtainment of Nb–REE ore samples from the Tomtor deposit and their preparation for analyses, study of the geochemical features and isotopic composition of carbon and oxygen, and identification of carotenoids in the samples from boreholes 101 and 6151.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Moroz.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moroz, T.N., Palchik, N.A., Zhmodik, S.M. et al. Crystal-Chemical Features of Apatite in Carbonatites of the Tomtor Deposit (The Republic of Sakha (Yakutia), Russia): X-Ray Diffraction and Vibrational Spectroscopy Data. Crystallogr. Rep. 66, 923–930 (2021). https://doi.org/10.1134/S1063774521060225

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774521060225

Navigation