Skip to main content
Log in

Raman Scattering of Carbon Nanotubes Implanted with Nitrogen

  • NANOMATERIALS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The Raman spectra of multiwall (bamboo-type) carbon nanotubes implanted with nitrogen have been investigated under excitation by different lasers with wavelengths λ = 405, 532, 633, and 785 nm in a wide frequency range from 50 to 4500 cm–1. The spectra included intense bands corresponding to the G and D modes and their overtone transitions. The microscopic mechanism of the frequency shift of the D band of carbon nanotube Raman scattering with a change in the excitation wavelength is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S. Ijima, Nature 354, 56 (1991).

    Article  ADS  Google Scholar 

  2. D. S. Bethune, C. H. Kiang, M. S. de Vries, et al., Nature 363, 605 (1993).

    Article  ADS  Google Scholar 

  3. S. Iijima and T. Ichihashi, Nature 363, 603 (1993).

    Article  ADS  Google Scholar 

  4. R. P. Raffaelle, B. J. Landi, J. D. Harris, et al., Mater. Sci. Eng.: B 116, 233 (2005).

    Article  Google Scholar 

  5. M. S. Marcus, J. M. Simmons, O. M. Castellini, et al., J. Appl. Phys. 100, 084306 (2006).

    Article  ADS  Google Scholar 

  6. Y. Xu, Y. Zhang, E. Suhir, and X. Wang, J. Appl. Phys. 100, 074302 (2006).

    Article  ADS  Google Scholar 

  7. G. L. Zhao, D. Bagayoko, and L. Yang, J. Appl. Phys. 99, 114311 (2006).

    Article  ADS  Google Scholar 

  8. A. B. Dalton, S. Collins, E. Munoz, et al., Nature 423, 703 (2003).

    Article  ADS  Google Scholar 

  9. P. J. Britto, K. S. V. Santhanam, and P. M. Ajayan, Bioelectrochem. Bioenerg. 41, 121 (1996).

    Article  Google Scholar 

  10. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, et al., Nature 386, 377 (1997).

    Article  ADS  Google Scholar 

  11. G. L. Che, B. B. Lakshmi, E. R. Fisher, and C. R. Martin, Nature 393, 346 (1998).

    Article  ADS  Google Scholar 

  12. P. Kral and M. Shaprio, Phys. Rev. Lett. 86, 131 (2001).

    Article  ADS  Google Scholar 

  13. D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, Chem. Rev. 106, 1105 (2006).

    Article  Google Scholar 

  14. Y. L. Zhao and J. F. Stoddart, Acc. Chem. Res. 42, 1161 (2009).

    Article  Google Scholar 

  15. V. N. Khabashesku, W. E. Billups, and J. L. Margrave, Acc. Chem. Res. 35, 1087 (2002).

    Article  Google Scholar 

  16. S. Banerjee, T. Hemraj-Benny, and S. S. Wong, Adv. Mater. 17, 17 (2005).

    Article  Google Scholar 

  17. A. B. David and A. N. Khlobystov, Chem. Soc. Rev. 35, 637 (2006).

    Article  Google Scholar 

  18. M. Terrones, H. Terrones, N. Grobert, et al., Appl. Phys. Lett. 75, 3932 (1999).

    Article  ADS  Google Scholar 

  19. C. Enrique, D. David, T. Hugo, et al., Nanoscale 11, 2829 (2019).

    Article  Google Scholar 

  20. R. Czerw, M. Terrones, J. C. Charlier, et al., Nano Lett. 1, 457 (2001).

    Article  ADS  Google Scholar 

  21. D. Golberg, P. S. Dorozhkin, Y. Bando, et al., Appl. Phys. A 76, 499 (2003).

    Article  ADS  Google Scholar 

  22. F. Villalpando-Paezm, A. H. Romero, E. Munoz-Sandoval, et al., Chem. Phys. Lett. 386, 137 (2004).

    Article  ADS  Google Scholar 

  23. T. D. Krauss, F. W. Wise, and D. B. Tanner, Phys. Rev. Lett. 76, 1376 (1996).

    Article  ADS  Google Scholar 

  24. T. Bischof, G. Lermann, B. Schreder, et al., J. Opt. Soc. Am. B 14, 3334 (1997).

    Article  ADS  Google Scholar 

  25. B. Schreder, A. Materny, W. Kiefer, et al., J. Appl. Phys. 88, 764 (2000).

    Article  ADS  Google Scholar 

  26. R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G. Dresselhaus, Chem. Phys. Lett. 209, 77 (1993).

    Article  ADS  Google Scholar 

  27. E. M. Baitinger, N. A. Vekesser, I. N. Kovalev, et al., Inorg. Mater. 47, 471 (2011).

    Article  Google Scholar 

  28. Y. Ouyang, L. M. Cong, L. Chen, et al., Phys. E: Low-Dimensional Syst. Nanostruct. 40, 2386 (2008).

    Google Scholar 

  29. A. D. Roberta, J. L. Brian, and P. R. Ryne, J. Appl. Phys. 101, 064307 (2007).

    Article  Google Scholar 

  30. E. F. Antunes, A. O. Lobo, E. J. Corat, et al., Carbon 44, 2202 (2006).

    Article  Google Scholar 

  31. M. J. Matthews, M. A. Pimenta, G. Dresselhaus, et al., Phys. Rev. B 59, 6585 (1999).

    Article  ADS  Google Scholar 

  32. L. G. Bulusheva, A. V. Okotrub, I. A. Kinloch, et al., Phys. Status Solidi B 245, 1971 (2008).

    Article  ADS  Google Scholar 

  33. T. Sharifi, F. Nitze, H. R. Barzegar, et al., Carbon 50, 535 (2012).

    Article  Google Scholar 

  34. Y. Kawashima and G. Katagiri, Phys. Rev. B 52, 10053 (1995).

    Article  ADS  Google Scholar 

  35. P. H. Tan, L. An, L. Q. Liu, et al., Phys. Rev. B 66, 245410 (2002).

    Article  ADS  Google Scholar 

  36. M. Ramsteiner and J. Wagner, Appl. Phys. Lett. 51, 1355 (1987).

    Article  ADS  Google Scholar 

  37. A. V. Baranov, A. N. Bekhterev, Y. S. Bobovich, and V. I. Petrov, Opt. Spectrosc. 62, 612 (1987).

    ADS  Google Scholar 

  38. Y. Wang, D. C. Alsmeyer, and R. L. McCreery, Chem. Mater. 2, 557 (1990).

    Article  Google Scholar 

  39. J. Kastner, T. Pichler, H. Kuzmany, et al., Chem. Phys. Lett. 221, 53 (1994).

    Article  ADS  Google Scholar 

  40. A. M. Rao, E. Richter, S. Bandow, et al., Science 275, 187 (1997).

    Article  Google Scholar 

  41. M. S. Dresselhaus and P. C. Eklund, Adv. Phys. 49, 705 (2000).

    Article  ADS  Google Scholar 

  42. I. Pὀcsik, M. Hundhausen, M. Koὀs, and L. Ley, J. Non-Cryst. Solids 227–230, 1083 (1998).

    Article  ADS  Google Scholar 

  43. C. Thomsen and S. Reich, Phys. Rev. Lett. 85, 5214 (2000).

    Article  ADS  Google Scholar 

  44. S. D. M. Brown, A. Jorio, M. S. Dresselhaus, and G. Dresselhaus, Phys. Rev. B 64, 073403 (2001).

    Article  ADS  Google Scholar 

  45. A. K. Sood, R. Gupta, and S. A. Asher, J. Appl. Phys. 90, 4494 (2001).

    Article  ADS  Google Scholar 

  46. J. Kürti, V. Zὀlyomi, A. Grüneis, and H. Kuzmany, Phys. Rev. B 65, 165433 (2002).

    Article  ADS  Google Scholar 

  47. H. Jantoljak, J.-P. Salvetat, L. Forro, and C. Thomsen, Appl. Phys. A 67, 113 (1998).

    Article  ADS  Google Scholar 

Download references

Funding

The study was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. 0004-2019-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Gorelik.

Additional information

Translated by A. Zolot’ko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulyarskiy, V.S., Abdurakhmonov, S.D. & Gorelik, V.S. Raman Scattering of Carbon Nanotubes Implanted with Nitrogen. Crystallogr. Rep. 65, 1019–1024 (2020). https://doi.org/10.1134/S1063774520060115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774520060115

Navigation