Skip to main content
Log in

Interaction of N,N'-Di(4-chlorophenyl)diimide 1,1'-Binaphtyl-4,4',5,5',8,8'-hexacarboxylic Acid with Thiourea Dioxide in Solution and Thin Film

  • SURFACE AND THIN FILMS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The reactions of interaction of N,N'-di(4-chlorophenyl)diimide 1,1'-binaphtyl-4,4',5,5',8,8'-hexa-carboxylic acid (cubogen red) with thiourea dioxide in a water-alkaline solution and a Langmuir–Blodgett thin film, obtained on quartz and silicon substrates, have been investigated. Electron absorption spectroscopy have revealed that the reaction of reductive cyclization of cubogen with formation of perylenetetracarboxylic acid diimide derivatives occurs in a water-alkaline solution. At the same time, the interaction of thiourea dioxide with a cubogen thin film does not lead to the formation of cyclization products; nevertheless, it changes the film structure. One might suggest that soluble leuco forms of J aggregates are formed in this case, whereas H aggregates remain intact in the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. Mei, N. L. C. Leung, R. T. K. Kwok, et al., Chem. Rev. 115, 11718 (2015). https://doi.org/10.1021/acs.chemrev.5b00263

    Article  Google Scholar 

  2. A. S. Chumakov, A. J. Al-Alwani, I. A. Gorbachev, et al., BioNanoScience 7, 666 (2017). https://doi.org/10.1007/s12668-017-0449-4

    Article  Google Scholar 

  3. A. V. Kazak, N. V. Usol’tseva, V. V. Bykova, et al., Mol. Cryst. Liq. Cryst. 541, 28 (2011). https://doi.org/10.1080/15421406.2011.569529

    Article  Google Scholar 

  4. J. A. Luceño-Sánchez, A. M. Díez-Pascual, and R. P. Capilla, Int. J. Mol. Sci. 20, 976 (2019). https://doi.org/10.3390/ijms20040976

    Article  Google Scholar 

  5. A. V. Kazak, M. A. Marchenkova, A. I. Smirnova, et al., Mendeleev Commun. 30 (1), 52 (2020). https://doi.org/10.1016/j.mencom.2020.01.017

    Article  Google Scholar 

  6. P. Friederich, A. Fediai, S. Kaiser, et al., Adv. Mater. 31, 1808256 (2019). https://doi.org/10.1002/adma.201808256

    Article  Google Scholar 

  7. A. V. Kazak, N. V. Usol’tseva, A. I. Smirnova, et al., Macroheterocycles 8 (3), 284 (2015). https://doi.org/10.6060/mhc150972k

    Article  Google Scholar 

  8. A. V. Kazak, N. V. Usol’tseva, A. I. Smirnova, et al., Crystallogr. Rep. 61 (3), 493 (2016). https://doi.org/10.1134/S1063774516030159

    Article  ADS  Google Scholar 

  9. Q. Wang, Q.-S. Tian, Y.-L. Zhang, et al., J. Mater. Chem. C 7, 11329 (2019). https://doi.org/10.1039/C9TC03092A

    Article  Google Scholar 

  10. A. V. Kazak, M. A. Marchenkova, T. V. Dubinina, et al., New J. Chem. 44, 3833 (2020). https://doi.org/10.1039/c9nj06041c

    Article  Google Scholar 

  11. P. Alessio, M. L. Braunger, R. F. Aroca, et al., J. Phys. Chem. C 119, 12055 (2015). https://doi.org/10.1021/acs.jpcc.5b03093

    Article  Google Scholar 

  12. S. A. El-Daly, I. A. Salem, M. A. Hussein, et al., J. Fluoresc. 25, 379 (2015). https://doi.org/10.1007/s10895-015-1523-3

    Article  Google Scholar 

  13. L. Zou, A. You, J. Song, et al., Colloids Surf. A 465, 39 (2015). https://doi.org/10.1016/j.colsurfa.2014.10.021

    Article  Google Scholar 

  14. E. Kozma and M. Catellani, Dyes Pigm. 98, 160 (2013). https://doi.org/10.1016/j.dyepig.2013.01.020

    Article  Google Scholar 

  15. J.-P. Sun, A. D. Hendsbee, A. J. Dobson, et al., Org. Electron. 35, 151 (2016). https://doi.org/10.1016/j.orgel.2016.05.012

    Article  Google Scholar 

  16. R. Sridhar, S. Ravichandran, K. Sunil Kumar, et al., J. Phys. Chem. Lett. 3, 2405 (2012). https://doi.org/10.1021/jz301047d

    Article  Google Scholar 

  17. O. I. Shulepova, V. A. Ryabinin, V. F. Starichenko, et al., Zh. Org. Khim. 29, 1001 (1993).

    Google Scholar 

  18. Yu. V. Polenov, G. D. Kublashvili, V. V. Budanov, et al., Zh. Prikl. Khim. 63, 1622 (1990).

    Google Scholar 

  19. Yu. V. Polenov, G. D. Kublashvili, V. V. Budanov, et al., Zh. Prikl. Khim. 65, 2570 (1992).

    Google Scholar 

  20. S. L. Selector, L. B. Bogdanova, A. V. Shokurov, et al., Macroheterocycles 7 (3), 311 (2014). https://doi.org/10.6060/mhc140506s

    Article  Google Scholar 

  21. I. Grabchev and T. Konstantinova, Dyes Pigm. 33, 197 (1997). https://doi.org/10.1016/S0143-7208(96)00053-8

    Article  Google Scholar 

  22. E. Martin, R. Weigand, and A. Pardo, J. Lumin. 68, 157 (1996). https://doi.org/10.1016/0022-2313(96)00008-7

    Article  Google Scholar 

  23. C. Siegers, B. Olàh, U. Würfel, et al., Solar Energ. Mater. Solar Cells 93, 552 (2009). https://doi.org/10.1016/j.solmat.2008.11.038

    Article  Google Scholar 

  24. H.-H. Lin, Y.-C. Chan, J.-W. Chen, et al., J. Mater. Chem. 21, 3170 (2011). https://doi.org/10.1039/C0JM02942D

    Article  Google Scholar 

  25. G. Tu, Q. Zhou, Y. Cheng, et al., Synth. Met. 152, 161 (2005). https://doi.org/10.1016/j.synthmet.2005.07.173

    Article  Google Scholar 

  26. Z. Li, Q. Yang, and X. Qian, Bioorg. Med. Chem. 13, 4864 (2005). https://doi.org/10.1016/j.bmc.2005.05.006

    Article  Google Scholar 

  27. B. May, X. Poteau, D. Yuan, et al., Dyes Pigm. 42, 79 (1999). https://doi.org/10.1016/S0143-7208(99)00011-X

    Article  Google Scholar 

  28. N. S. Dokunikhin and G. N Vorozhtsov, USSR Inventor’s Certificate no. 366705, Int. Cl. C 07c 63/42, (applied for April 28, 1971; published January 5, 1974), Byull. Izobret., 1974, no. 1.

  29. V. V. Budanov, Chemistry and Technology of Reducers Based on Sulfoxylic Acid (Rongalite and Its Analogues) (Khimiya, Moscow, 1984) [in Russian].

    Google Scholar 

  30. I. G. Shafran, A. G. Stepanova, and L. I. Pankrat’eva, Transactions of IREA (Chemical Reagents and Preparations) (IREA, Moscow, 1963), Vol. 25, p. 215 [in Russian].

  31. A. V. Kazak, L. N. Zhukova, M. I. Kovaleva, et al., Liq. Cryst. and Their Appl. 18 (3), 74 (2018). https://doi.org/10.18083/LCAppl2018.3.74

  32. A. V. Kazak, T. V. Dubinina, and I. V. Kholodkov, Liq. Cryst. and Their Appl. 19 (4), 88 (2019). https://doi.org/10.18083/LCAppl.2019.4.88

  33. R. F. Kubin and A. N. Fletcher, J. Lumin. 27, 455 (1982). https://doi.org/10.1016/0022-2313(82)90045-X

    Article  Google Scholar 

  34. V. K. Jain and Z. H. Zaidi, Spectrochim. Acta A Mol. 44, 1159 (1988). https://doi.org/10.1016/0584-8539(88)80088-6

  35. Y. Sun, Y. Lei, H. Dong, et al., J. Am. Chem. Soc. 140, 6186 (2018). https://doi.org/10.1021/jacs.8b00772

    Article  Google Scholar 

  36. T. Sakamoto and C. Pac, J. Org. Chem. 66, 94 (2001). https://doi.org/10.1021/jo0010835

    Article  Google Scholar 

  37. S. Stappert, C. Li, K. Mullen, et al., Chem. Mater. 28, 906 (2016). https://doi.org/10.1021/acs.chemmater.5b04602

    Article  Google Scholar 

  38. V. J. Sapagovas, V. Gaidelis, V. Kovalevskij, et al., Dyes Pigm. 71, 178 (2006). https://doi.org/10.1016/j.dyepig.2005.06.012

    Article  Google Scholar 

  39. L. Liu, M. Yue, J. Lu, et al., Appl. Surf. Sci. 456, 645 (2018). https://doi.org/10.1016/j.apsusc.2018.06.183

    Article  ADS  Google Scholar 

  40. M. N. Siva Krishna, Z. Jiawang, C. Tao, et al., J. Am. Chem. Soc. 141, 1290 (2019). https://doi.org/10.1021/jacs.8b11201

    Article  Google Scholar 

  41. R. M. Hochstrasser and M. Kasha, Photochem. Photobiol. 3, 317 (1964). https://doi.org/10.1111/j.1751-1097.1964.tb08155.x

    Article  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation within a State assignment for research at the Ivanovo State University (grant no. FZZM-2020-0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Nikitin.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, K.S., Polenov, Y.V., Kazak, A.V. et al. Interaction of N,N'-Di(4-chlorophenyl)diimide 1,1'-Binaphtyl-4,4',5,5',8,8'-hexacarboxylic Acid with Thiourea Dioxide in Solution and Thin Film. Crystallogr. Rep. 65, 779–785 (2020). https://doi.org/10.1134/S1063774520050156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774520050156

Navigation