Skip to main content
Log in

Peculiarities of the Electron Structure of Pseudobinary Alloys (GeTe)m–(Sb2Te3)n

  • PHYSICAL PROPERTIES OF CRYSTALS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The electron band structure of GeTe, Sb2Te3, GeSb2Te4, and Ge2Sb2Te5 compounds has been calculated by the electron density functional method using the WIEN2k software package. These compounds belong to the class of (GeTe)m–(Sb2Te3)n pseudobinary alloys, which pass from the crystalline to the amorphous state and vice versa under laser irradiation or an electric pulse for extremely short times on the order of 1–100 ns. A detailed analysis of the parameters of critical points (maxima, minima, and inflection points) in the electron density distribution, located at the high-symmetry points of crystal structure, is performed. Characteristic values of the parameters of critical points in the electron density distribution are found for this class of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. M. Wuttig and N. Yamada, Nature Mater. 6, 824 (2007).

    Article  ADS  Google Scholar 

  2. T. Siegrist, P. Merkelbach, and M. Wuttig, Ann. Rev. Condens. Matter Phys. 3, 215 (2012).

    Article  Google Scholar 

  3. C. Wood, Rep. Prog. Phys. 51, 459 (1988).

    Article  ADS  Google Scholar 

  4. E. F. Stegmeier and G. Harbeke, Solid State Commun. 8, 1275 (1970).

    Article  ADS  Google Scholar 

  5. T. Chattopadhyay, J. X. Boucherle, and H. G. von Schnering, J. Phys. C: Solid State Phys. 20, 1431 (1987).

    Article  ADS  Google Scholar 

  6. T. Chatterji, C. M. N. Kumar, and U. D. Wdowik, Phys. Rev. B 91, 054110 (2015).

    Article  ADS  Google Scholar 

  7. V. L. Deringer, R. Dronkowski, and M. Wuttig, Adv. Funct. Mater. 25, 6343 (2015).

    Article  Google Scholar 

  8. N. Yamada, E. Ohno, K. Nishiuchi, et al., J. Appl. Phys. 69, 2849 (1991).

    Article  ADS  Google Scholar 

  9. M. H. Lankhost, B. W. Ketelaars, and R. A. Wolters, Nature Mater. 4, 347 (2005).

    Article  ADS  Google Scholar 

  10. F. Xiong, A. D. Liao, D. Estrada, and E. Pop, Science 232, 568 (2011).

    Article  ADS  Google Scholar 

  11. P. Blaha, K. Schwarz, G. K. H. Madsen, et al., WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Ed. by K. Schwarz (Techn. Univ. Wien, Vienna, 2001).

    Google Scholar 

  12. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).

    Article  ADS  Google Scholar 

  13. H. Dixit, R. Saniz, S. Cottenier, et al., J. Phys.: Condens. Matter 24, 205503 (2012).

    ADS  Google Scholar 

  14. A. Otero-de-la-Roza, E. R. Johnson, and V. Luaña, Comput. Phys. Commun. 185, 1007 (2014).

    Article  ADS  Google Scholar 

  15. R. F. W. Bader, Atoms in Molecules: A Quantum Theory (International Series of Monographs on Chemistry) (Clarendon, Oxford, 1990).

    Google Scholar 

  16. C. Gatti, Z. Kristallogr. 220, 399 (2005).

    Google Scholar 

  17. The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design, Ed. by C. F. Matta and R. J. Boyd (Wiley-VCH, Weinheim, 2007).

    Google Scholar 

  18. T. L. Anderson and H. B. Krause, Acta Crystallogr. B 30, 1307 (1974).

    Article  Google Scholar 

  19. K. A. Agaev and A. G. Talybov, Kristallografiya 11 (3), 454 (1966).

    Google Scholar 

  20. O. G. Karpinskii, L. E. Shelimova, M. A. Kretova, and J. P. Fleurial, J. Alloys Compd. 268, 112 (1998).

    Article  Google Scholar 

  21. International Tables for Crystallography, Vol. A: Space Group Symmetry, Ed. by T. Hahn (Springer, Berlin, 2005).

    Google Scholar 

  22. M. Morse and S. S. Cairns, Critical Point Theory in Global Analysis and Differential Geometry (Academic, New York, 1969).

    MATH  Google Scholar 

  23. S. Shaik, P. Maitre, G. Sini, and P. C. Hiberty, J. Am. Chem. Soc. 114, 7861 (1992).

    Article  Google Scholar 

  24. S. Shaik, D. Danovich, B. Silvi, et al., Chem. Eur. J. 11, 6358 (2005).

    Article  Google Scholar 

  25. L. Zhang, F. Ying, W. Wu, et al., Chem. Eur. J. 15, 2979 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Sergeev.

Additional information

Translated by A. Grudtsov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, V.G., Sergeev, G.S. Peculiarities of the Electron Structure of Pseudobinary Alloys (GeTe)m–(Sb2Te3)n. Crystallogr. Rep. 64, 422–427 (2019). https://doi.org/10.1134/S1063774519030209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774519030209

Navigation