Skip to main content
Log in

Influence of Dye Molecules on the Polarization of Ferroelectric Vinylidene Fluoride Copolymer

  • SURFACE AND THIN FILMS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Electrical, electromechanical, and structural–optical properties of films of vinylidene fluoride copolymer with tetrafluoroethylene TFE, doped with Rhodamine 6G dye, have been investigated. It is found that the conductivity increases in doped films; at the same time, it “anomalously” decreases with an increase in the field. The hysteresis loop of local piezoelectric response has an asymmetric shape, which is related to the difference in the local field when its polarity changes. According to the data of absorption and luminescence spectra, the dye (at chosen concentrations) exists in form of, at least, monomers and dimers. It is shown by IR spectroscopy that hydrogen bonds can be formed between a dye molecule and vinylidene fluoride units located in amorphous regions. A model is formulated, which provides a correlation between the electrical and structural properties of the doped films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. T. T. Wang, J. M. Herbert, and A. M. Glass, The Application of Ferroelectric Polymers (Blackie, Glasgow, 1988).

    Google Scholar 

  2. H. S. Nalwa, Ferroelectric Polymers: Chemistry, Physics and Applications (Marcel Dekker, New York, 1995).

    Book  Google Scholar 

  3. V. V. Kochervinskii, Usp. Khim. 63 (4), 383 (1994).

    Article  Google Scholar 

  4. T. Abidin, Q. Zhang, K. L. Wang, and D. J. Liaw, Polymer 55 (21), 5293 (2014).

    Article  Google Scholar 

  5. M. Wang, S. A. Vail, A. E. Keirstead, et al., Polymer 50 (16), 3974 (2009).

    Article  Google Scholar 

  6. R. Zhou, W. Liu, J. Kong, et al., Polymer 55 (6), 1520 (2014).

    Article  Google Scholar 

  7. K. A. Verkhovskaya and A. S. Tatikolov, Fiz. Tverd. Tela 35 (8), 2276 (1993).

    Google Scholar 

  8. K. A. Verkhovskaya, V. M. Fridkin, A. V. Bune, et al., J. Appl. Phys. 75 (1), 663 (1994).

    Article  ADS  Google Scholar 

  9. K. A. Verkhovskaya, N. D. Gavrilova, V. K. Novik, et al., Vestn. Mosk. Univ. Ser. 3, No. 3, 41 (1997).

    Google Scholar 

  10. A. G. Chaplygin and K. A. Verkhovskaya, Vestn. Mosk. Univ. Ser. 3, No. 5, 34 (1999).

    Google Scholar 

  11. V. V. Kochervinskii, D. A. Kiselev, M. D. Malinkovich, et al., Proc. I Russian Crystallographic Congress, Moscow, November 21–26, 2016, p. 399.

  12. V. V. Kochervinskii, Usp. Khim. 65 (10), 936 (1996).

    Article  Google Scholar 

  13. V. Kochervinskii et al., J. Appl. Phys. 117 (21), 214101 (2015).

    Article  ADS  Google Scholar 

  14. L. V. Levshin and D. M. Akbarova, Zh. Prikl. Spektrosk. 2 (1), 69 (1965).

    Google Scholar 

  15. L. V. Levshin, E. A. Bobrovskaya, and T. D. Slavnova, Zh. Prikl. Spektrosk. 5 (5), 648 (1966).

    Google Scholar 

  16. Yu. A. Mittsel’, L. V. Levshchin, A. P. Golovina, and E. A. Bobrovskaya, Vestn. Mosk. Univ. 1, 74 (1968).

    Google Scholar 

  17. D. Toptygin, B. Z. Packard, and L. Brand, Chem. Phys. Lett. 277 (5–6), 430 (1997).

    Article  ADS  Google Scholar 

  18. D. V. Ageev, S. V. Patsaeva, B. D. Ryzhikov, et al., J. Appl. Spectrosc. 75 (5), 653 (2008).

    Article  ADS  Google Scholar 

  19. G. S. S. Saini, S. Kaur, S. K. Tripathi, et al., Spectrochim. Acta A: Mol. Biomol. Spectrosc. 61 (4), 653 (2005).

    Article  ADS  Google Scholar 

  20. M. Lofaj, I. Valent, and J. Bujdák, Open Chem. 11 (10), 1606 (2013).

    Article  Google Scholar 

  21. V. Martínez Martínez., F. López Arbeloa, J. Bañuelos Prieto, and I. López Arbeloa, J. Phys. Chem. B 109 (15), 7443 (2005).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research, project no. 18-03-00493, and the Ministry of Education and Science of the Russian Federation, project no. 16.2811.2017/4.6. Investigations by scanning probe microscopy were supported by the Ministry of Education and Science of the Russian Federation and performed using equipment of the Shared Research Center “Materials Science and Metallurgy” of the National University of Science and Technology MISiS (project no. 11.9706.2017/7.8). Electron spectroscopy investigations were supported by the Russian Foundation for Basic Research, project no. 16-32-00914.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kochervinskii.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochervinskii, V.V., Kozlova, N.V., Shmakova, N.A. et al. Influence of Dye Molecules on the Polarization of Ferroelectric Vinylidene Fluoride Copolymer. Crystallogr. Rep. 63, 983–988 (2018). https://doi.org/10.1134/S1063774518050164

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774518050164

Keywords

Navigation