Skip to main content
Log in

Study of Lasing in Liquid-Crystal Systems with Microgratings

  • Liquid Crystals
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Waveguide lasing in a layer of nematic liquid crystal (NLC) doped with a dye has been experimentally observed. A chromium micrograting with a period of 1.76 μm has been deposited on the surface one of the cell substrates to provide a distributed feedback (DFB) and partially extract laser radiation to a quartz substrate. The DFB provides lasing in the ninth diffraction order for waveguide TM modes. Laser radiation is observed at the output of the substrate end face at an angle of 67.0° ± 1.5° with respect to the normal to the waveguide plane. An increase in voltage across the micrograting electrodes leads to red-shifted multimode lasing. A numerical simulation of a structure imitating the experimental cell has shown good agreement between the calculation results and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kogelnik and C. V. Shank, J. Appl. Phys. 43 (5), 2327 (1972).

    Article  ADS  Google Scholar 

  2. H. Stoll and A. Yariv, Opt. Commun. 8 (1), 5 (1973).

    Article  ADS  Google Scholar 

  3. A. Yariv and H. W. Yen, Opt. Commun. 10 (2), 120 (1974).

    Article  ADS  Google Scholar 

  4. A. Yariv and M. Nakamura, IEEE J. Quantum Electron. 13 (4), 233 (1977).

    Article  ADS  Google Scholar 

  5. Sh. Li and D. Botez, IEEE J. Quantum Electron. 43 (8), 655 (2007).

    Article  ADS  Google Scholar 

  6. A. A. Afonenko, V. Ya. Aleshkin, and A. A. Dubinov, Semiconductors 48 (1), 89 (2014).

    Article  ADS  Google Scholar 

  7. J. Fricke, W. John, A. Klehr, et al., Semicond. Sci. Technol. 27 (5), 055009 (2012).

    Article  ADS  Google Scholar 

  8. V. V. Vasil’eva, D. A. Vinokurov, V. V. Zolotarev, et al., Semiconductors 46 (2), 241 (2012).

    Article  ADS  Google Scholar 

  9. J. Fricke, F. Bugge, A. Ginolas, et al., IEEE Photon. Technol. Lett. 22 (5), 284 (2010).

    Article  ADS  Google Scholar 

  10. I. Il’chishin, E. Tikhonov, and V. Tishchenko, JETP Lett. 32 (1), 24 (1980).

    ADS  Google Scholar 

  11. V. I. Kopp, Z.-Q. Zhang, and A. Genack, Prog. Quantum Electron. 27 (6), 369 (2003).

    Article  ADS  Google Scholar 

  12. W. Cao, A. Munos, P. Palffy-Muhoray, et al., Nature Mater. 1 (2), 111 (2002).

    Article  ADS  Google Scholar 

  13. A. Chanishvili, G. Chilaya, G. Petriashvili, et al., Appl. Phys. Lett. 86 (5), 051107 (2005).

    Article  ADS  Google Scholar 

  14. G. Strangi, V. Barna, R. Caputo, et al., Phys. Rev. Lett. 94 (6), 063903 (2005).

    Article  ADS  Google Scholar 

  15. S. P. Palto, M. I. Barnik, A. R. Geivandov, et al., Phys. Rev. E 92 (3), 032502 (2015).

    Article  ADS  Google Scholar 

  16. N. M. Shtykov, S. P. Palto, B. A. Umanskii, et al., Kvantovaya Elektron. 45 (4), 305 (2015).

    Article  Google Scholar 

  17. https://doi.org/optiwave.com/applications/fdtd-optical-grating-simulations-using-optifdtd/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Shtykov.

Additional information

Original Russian Text © N.M. Shtykov, S.P. Palto, B.A. Umanskii, A.R. Geivandov, 2018, published in Kristallografiya, 2018, Vol. 63, No. 4, pp. 606–614.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shtykov, N.M., Palto, S.P., Umanskii, B.A. et al. Study of Lasing in Liquid-Crystal Systems with Microgratings. Crystallogr. Rep. 63, 633–640 (2018). https://doi.org/10.1134/S1063774518040259

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774518040259

Navigation