Skip to main content
Log in

Synthesis, Structure, and Band Gap of a Novel Inorganic–Organic Hybrid Material Based on Antimony Halide and Organoamine

  • Structure of Macromolecular Compounds
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Using an organoamine, 2,5-bis (1-imidazoly) pyridine (L), a novel inorganic-organic hybrid material based on antimony halide formulated as {(CH3)2L}2+{(Sb4Cl8I8)0.5}2–(1) was synthesized in situ via solvothermal technique and characterized by the single-crystal X-ray diffraction. During the synthesis, the organoamine L was transformed in situ into the imidazolium ion, {(CH3)2L}2+. In the compound 1, four Sb(III) ions are linked by two \({u_{{3^ - }}}\)I and four u\({u_{{2^ - }}}\)I ligands into a (Sb4I8Cl8)4–unit, in which eight Clions and two Iions act as the terminal ligands. The uncoordinated {(CH3)2L}2+ organoamine moieties are linked with the (Sb4I8Cl8)4– clusters via H bonds into three-dimensional (3D) supramolecular architecture. The band structure calculation shows that the compound has an indirect band gap of 2.253 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. N. Dybtsev, H. Chun, and K. Kim, Chem. Commun. 14, 1594 (2004).

    Article  Google Scholar 

  2. S. Y. Song, X. Z. Song, S. N. Zhao, et al., Dalton Trans. 41, 10412 (2012).

    Article  Google Scholar 

  3. M. A. Gotthardt, S. Grosjean, T. S. Brunner, et al., Dalton Trans. 44, 16802 (2015).

    Article  Google Scholar 

  4. Y. Gong, Y. C. Zhou, T. F. Liu, et al., Chem. Commun. 47, 5982 (2011).

    Article  Google Scholar 

  5. J. E. Bachman and J. R. Long, Energy Environ. Sci. 9, 2031 (2016).

    Article  Google Scholar 

  6. B. W. Cai, Y. W. Ren, H. F. Jiang, et al., Cryst. Eng. Commun. 14, 5285 (2012).

    Article  Google Scholar 

  7. F. M. Zhang, S. Zheng, Q. Xiao, et al., Green Chem. 18, 2900 (2016).

    Article  Google Scholar 

  8. M. L. Ma, C. Ji, and S. Q. Zang, Dalton Trans. 42, 10579 (2013).

    Article  Google Scholar 

  9. H. Khajavi, J. Gascon, J. M. Schins, et al., J. Phys. Chem. C 115, 12487 (2011).

    Article  Google Scholar 

  10. C. G. Silva, A. Corma, and H. Garcia, J. Mater. Chem. 20, 3141 (2010).

    Article  Google Scholar 

  11. M. C. Das, H. Xu, Z. Y. Wang, et al., Chem. Commun. 47, 11715 (2011).

    Article  Google Scholar 

  12. C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, Science 286, 945 (1999).

    Article  Google Scholar 

  13. D. B. Mitzi, J. Mater. Chem. 14, 2355 (2004).

    Article  Google Scholar 

  14. G. E. Eperson, V. M. Burlakov, P. Docampo, et al., Adv. Funct. Mater. 24, 152 (2014).

    Google Scholar 

  15. N. E. Brese and M. O’Keeffe, Acta Crystallogr. B 47, 192 (1991).

    Article  Google Scholar 

  16. D. Bi, M. I. Tress, P. Gao, et al., Sci. Adv. 2, e1501170 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, JY., Yan, ZS. & Gong, Y. Synthesis, Structure, and Band Gap of a Novel Inorganic–Organic Hybrid Material Based on Antimony Halide and Organoamine. Crystallogr. Rep. 63, 433–437 (2018). https://doi.org/10.1134/S1063774518030100

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774518030100

Navigation