Skip to main content
Log in

X-ray and Theoretical Studies of 2-((5-Amino-1,3,4-thiadiazol-2-yl)thio)-1-phenylethanone

  • Structure of Organic Compounds
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The crystal structure of 2-((5-amino-1,3,4-thiadiazol-2-yl)thio)-1-phenylethanone was determined by X-ray diffraction method. The compound crystallizes in orthorhombic crystal system, sp. gr. Pbca. The atoms that constitute thiadiazole and phenyl rings do not form any significant deviation from the ring planes. Compound has two intermolecular N–H···N hydrogen bonds and one C–H···π interaction. Using DFT/B3LYP method with 6-31G(d), 6-311G(d), 6-311G(d, p), and 6-311++G(d, p) basis sets, the molecular geometry of the compound was optimised. Bond lenghts, bond angles, torsion angles, dihedral angles, and HOMO–LUMO were calculated from the optimised geometry of the compound. The results obtained by X-ray diffraction method were compared with the results obtained through four different basis sets. Total energy of the molecule was calculated for four different basis sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Yusuf, R. A. Khan, and B. Ahmed, Bioorg. Med. Chem. 16, 8029 (2008).

    Article  Google Scholar 

  2. I. Khan, S. Ali, S. Hameed, et al., Eur. J. Med. Chem. 45, 5200 (2010).

    Article  Google Scholar 

  3. D. Cressier, C. Prouillac, P. Hernandez, et al., Bioorg. Med. Chem. 17, 5275 (2009).

    Article  Google Scholar 

  4. P. Li, L. Shi, X. Yang, et al., Bioorg. Med. Chem. Lett. 24, 1677 (2014).

    Article  Google Scholar 

  5. M. H. Moshafi, M. Sorkhi, S. Emami, et al., Arch. Pharm. Chem. Life Sci. 11, 178 (2011).

    Article  Google Scholar 

  6. I. A. Shaaban, A. E. Hassan, A. M. Abuelela, et al., J. Mol. Struct. 1103, 70 (2016).

    Article  ADS  Google Scholar 

  7. S. R. Pattan, B. S. Kittur, B. S. Sastry, et al., Indian J. Chem., Sect. B 50, 615 (2011).

    Google Scholar 

  8. J. Lee, S. H. Lee, H. J. Seo, et al., Bioorg. Med. Chem. 18, 2178 (2010).

    Article  Google Scholar 

  9. F. Liu, X. Q. Luo, B. A. Song, et al., Bioorg. Med. Chem. 16, 3632 (2008).

    Article  Google Scholar 

  10. W. M. Xu, S. Z. Li, M. He, et al., Bioorg. Med. Chem. Lett. 23, 5821 (2013).

    Article  Google Scholar 

  11. N. Siddiqui, P. Ahuja, S. Malik, et al., Arch. Pharm. 346, 819 (2013).

    Article  Google Scholar 

  12. D. V Dekhane, S. S. Pawar, S. Gupta, et al., Bioorg. Med. Chem. Lett. 21, 6527 (2011).

    Article  Google Scholar 

  13. M. Amir, H. Kumar, and S. A. Javed, Arch. Pharm. 340, 577 (2007).

    Article  Google Scholar 

  14. A. Foroumadi, Z. Kargar, A. Sakhteman, et al., Bioorg. Med. Chem. Lett. 16, 1164 (2006).

    Article  Google Scholar 

  15. A. A. Kadi, N. R. El-Brollosy, O. A. Al-Deeb, et al., Eur. J. Med. Chem. 42, 235 (2007).

    Article  Google Scholar 

  16. M. Er, A. Sahin, and H. Tahtaci, Maced. J. Chem. Chem. Eng. 33, 189 (2014).

    Article  Google Scholar 

  17. H. Rajak, R. Deshmukh, N. Aggarwal, et al., Arch. Pharm. 342, 453 (2009).

    Article  Google Scholar 

  18. L. Hosseinzadeh, A. Khorand, and A. Aliabadi, Arch. Pharm. 346, 812 (2013).

    Article  Google Scholar 

  19. K. Sancak, Y. Ünver, and M. Er, Turk. J. Chem. 31, 125 (2007).

    Google Scholar 

  20. X. J. Zou, L. H. Lai, G. Y. Jin, et al., J. Agric. Food. Chem. 50, 3757 (2002).

    Article  Google Scholar 

  21. K. M. Agrawal and G. S. Talele, J. Chem. 2013, 1 (2013).

    Article  Google Scholar 

  22. APEX2 and SAINT (Bruker AXS, Madison, Wisconsin, 2009).

  23. G. M. Sheldrick, SHLEXS-97. Program for Refinement of Crystal Structures (Univ. of Göttingen, Göttingen, 1997).

    Google Scholar 

  24. G. M. Sheldrick, Acta. Crystallogr. C 71, 3 (2015).

    Article  Google Scholar 

  25. L. J. Farrugia, J. Appl. Crystallogr. 30, 565 (1997).

    Article  Google Scholar 

  26. L. J. Farrugia, J. Appl. Crystallogr. 32, 837 (1999).

    Article  Google Scholar 

  27. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  ADS  Google Scholar 

  28. C. Lee, W. W. Yang, and R.G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  ADS  Google Scholar 

  29. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., GAUSSIAN 03, Revision E.01 (Gaussian, Wallingford, CT, 2004).

    Google Scholar 

  30. R. Dennington II, T. Keith, and J. Millam, Gauss View, Version 4.1.2 (Semichem Inc., Shawnee Mission, KS, 2007).

    Google Scholar 

  31. N. Boechat, S. B. Ferreira, C. Glidewell, et al., Acta Crystallogr. C 62, o42 (2006).

    Article  Google Scholar 

  32. D. E. Lynch, Acta Crystallogr. C 57, 1201 (2001).

    Article  Google Scholar 

  33. J. T. Mague, M. Akkurt, S. K. Mohamed, et al., Acta Crystallogr. E 69, o1855 (2013).

    Article  Google Scholar 

  34. H. L. Khouzani, D. Hajiheidari, W. T. Robinson, et al., Acta Crystallogr. E 65, o2287 (2009).

    Article  Google Scholar 

  35. R. G. Pearson, J. Org. Chem. 54, 1423 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reşat Ustabaş.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ustabaş, R., Çoruh, U., Er, M. et al. X-ray and Theoretical Studies of 2-((5-Amino-1,3,4-thiadiazol-2-yl)thio)-1-phenylethanone. Crystallogr. Rep. 62, 1089–1094 (2017). https://doi.org/10.1134/S106377451707029X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377451707029X

Navigation