Skip to main content
Log in

Description of the atomic disorder (local order) in crystals by the mixed-symmetry method

  • Crystallographic Software
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

An approach to the description of local atomic disorder (short-range order) in single crystals by the mixed-symmetry method based on Bragg scattering data is proposed, and the corresponding software is developed. In defect-containing crystals, each atom in the unit cell can be described by its own symmetry space group. The expression for the calculated structural factor includes summation over different sets of symmetry operations for different atoms. To facilitate the search for new symmetry elements, an “atomic disorder expert” was developed, which estimates the significance of tested models. It is shown that the symmetry lowering for some atoms correlates with the existence of phase transitions (in langasite family crystals) and the anisotropy of physical properties (in rare-earth dodecaborides RB12).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Shukshin, Tr. IOFAN 64, 3 (2008).

    Google Scholar 

  2. T. R. Welberry, Diffuse X-Ray Scattering and Models of Disorder (Oxford Univ. Press, New York, 2004).

    Google Scholar 

  3. A. P. Dudka, B. P. Sobolev, and V. I. Simonov, Crystallogr. Rep. 58 (6), 822 (2013).

    Article  ADS  Google Scholar 

  4. K. Dornberger-Schiff, Abh. Deutsch. Akad. Wiss. 3, 2 (1964).

    Google Scholar 

  5. E. L. Belokoneva, Crystallogr. Rep. 56 (6), 962 (2011).

    Article  ADS  Google Scholar 

  6. E. L. Belokoneva and I. K. Shagivaleeva, Crystallogr. Rep. 57 (3), 369 (2012).

    Article  ADS  Google Scholar 

  7. E. L. Belokoneva, A. P. Zorina, and O. V. Dimitrova, Crystallogr. Rep. 58 (4), 586 (2013).

    Article  ADS  Google Scholar 

  8. S. V. Borisov, S. A. Magarill, and N. V. Pervukhina, Crystallogr. Rep. 56 (6), (2011).

    Google Scholar 

  9. S. V. Borisov, S. A. Magarill, and N. V. Pervukhina, Crystallogr. Rep. 57 (5), 656 (2012).

    Article  ADS  Google Scholar 

  10. S. V. Borisov, S. A. Magarill, and N. V. Pervukhina, Crystallogr. Rep. 60 (6), 791 (2015).

    Article  ADS  Google Scholar 

  11. E. V. Chuprunov, E. A. Soldatov, and T. N. Tarkhova, Kristallografiya 33 (3), 759 (1988).

    Google Scholar 

  12. N. V. Somov and E. V. Chuprunov, Crystallogr. Rep. 59 (1), 137 (2014).

    Article  ADS  Google Scholar 

  13. D. Orobengoa, C. Capillas, M. I. Aroyo, and J. M. Perez-Mato, J. Appl. Crystallogr. 42, 820 (2009).

    Article  Google Scholar 

  14. N. E. Novikova, A. P. Dudka, I. A. Verin, et al., Acta Crystallogr. A 70, C237 (2014).

    Article  Google Scholar 

  15. K. Kurki-Suonio, Acta Crystallogr. A 24, 379 (1968).

    Article  ADS  Google Scholar 

  16. F. L. Hirshfeld, Acta Crystallogr. B 27, 769 (1971).

    Article  Google Scholar 

  17. R. F. Stewart, Acta Crystallogr. A 32, 565 (1976).

    Article  ADS  Google Scholar 

  18. N. K. Hansen and P. Coppens, Acta Crystallogr. A 34, 909 (1978).

    Article  ADS  Google Scholar 

  19. P. Coppens, X-Ray Charge Densities and Chemical Bonding (Oxford Univ. Press, Oxford, 1997).

    Google Scholar 

  20. R. F. W. Bader, Atoms in Molecules. A Quantum Theory (Clarendon, Oxford, 1990).

    Google Scholar 

  21. N. Claiser, M. Souhassou, and C. Lecomte, J. Phys. Chem. Solids 65, 1927 (2004).

    Article  ADS  Google Scholar 

  22. T. Koritsanszky, S. Howard, P. Macchi, et al., XD. A Computer Program Package for Multipole Refinement and Analysis of Electron Densities from Diffraction Data (Free University of Berlin, Berlin, 2003).

    Google Scholar 

  23. R. F. Stewart, M. A. Spackman, and C. Flensburg, VALRAY User’s Manual (Carnegie-Mellon University and University of Copenhagen, 2000).

    Google Scholar 

  24. C. Jelsch, B. Guillot, A. Lagoutte, and C. Lecomte, J. Appl. Crystallogr. 38, 38 (2005).

    Article  Google Scholar 

  25. B. Dittrich, C. B. Hubschle, J. J. Holstein, and F. P. A. Fabbiani, J. Appl. Crystallogr. 42, 1110 (2009).

    Article  Google Scholar 

  26. A. Dudka, J. Appl. Crystallogr. 40, 602 (2007).

    Article  MathSciNet  Google Scholar 

  27. P. I. Kuznetsov, R. L. Stratonovich, and V. I. Tikhonov, Teor. Veroyatn. Ee Primen. 5 (1), 84 (1960).

    Google Scholar 

  28. C. K. Johnson, Acta Crystallogr. A 25, 187 (1969).

    Article  ADS  Google Scholar 

  29. International Tables for Crystallography, Ed. by A. J. C. Wilson (Kluwer, Dordrecht, 1992), Vol. C.

  30. Z. Su and P. Coppens, Acta Crystallogr. A 54, 646 (1998).

    Article  Google Scholar 

  31. W. C. Hamilton, Acta Crystallogr. 18, 502 (1965).

    Article  Google Scholar 

  32. B. V. Mill’, A. V. Butashin, G. G. Khodzhabagyan, et al., Dokl. Akad. Nauk SSSR 264 (6), 1385 (1982).

    Google Scholar 

  33. E. L. Belokoneva and N. V. Belov, Dokl. Akad. Nauk SSSR 260 (6), 1363 (1981).

    Google Scholar 

  34. K. Marty, P. Bordet, V. Simonet, et al., Phys. Rev. B 81, 054416 (2010).

    Article  ADS  Google Scholar 

  35. I. S. Lyubutin, P. G. Naumov, and B. V. Mill, Europhys. Lett. 90, 67005 (2010).

    Article  ADS  Google Scholar 

  36. A. P. Dudka and B. V. Mill’, Crystallogr. Rep. 58 (4), 594 (2013).

    Article  ADS  Google Scholar 

  37. A. P. Dudka and B. V. Mill’, Crystallogr. Rep. 59 (5), 689 (2014).

    Article  ADS  Google Scholar 

  38. A. P. Dudka, Crystallogr. Rep. 61 (2), 187 (2016).

    Article  ADS  Google Scholar 

  39. N. Araki, H. Oshato, K. Kakimoto, et al., J. Eur. Ceram. Soc. 27, 4099 (2007).

    Article  Google Scholar 

  40. A. P. Dudka and V. I. Simonov, Crystallogr. Rep. 56 (6), 980 (2011).

    Article  ADS  Google Scholar 

  41. A. F. Konstantinova, T. G. Golovina, B. V. Nabatov, et al., Crystallogr. Rep. 60 (6), 907 (2015).

    Article  ADS  Google Scholar 

  42. S. A. Pikin, I. S. Lyubutin, and A. P. Dudka, Crystallogr. Rep. 60 (5), 729 (2015).

    Article  ADS  Google Scholar 

  43. Gmelin Handbook of Inorganic Chemistry, Ed. by H. Bergman, Vol. C 11a (Springer, Berlin, 1989).

  44. H. Werheit, V. Filipov, K. Shirai, et al., J. Phys.: Cond. Matter 23, 065403 (2011).

    ADS  Google Scholar 

  45. I. Binder, S. LaPlaca, and B. Post, Boron Synthesis, Structure, Properties (1960), p. 86.

    Book  Google Scholar 

  46. A. Pietraszko, A. Czopnik, N. Shitsevalova, et al., Acta Crystallogr. A 56, s42 (2000).

    Article  Google Scholar 

  47. N. E. Sluchanko, A. N. Azarevich, A. V. Bogach, et al., JETP 113, 468 (2011).

    Article  ADS  Google Scholar 

  48. A. P. Dudka, O. N. Khrykina, N. B. Bolotina, et al., J. Alloys Compd. 692, 535 (2017).

    Article  Google Scholar 

  49. N. E. Sluchanko, A. N. Azarevich, A. V. Bogach, et al., JETP 115, 509 (2012).

    Article  ADS  Google Scholar 

  50. A. P. Dudka, E. S. Smirnova, I. A. Verin, and N. B. Bolotina, Crystallogr. Rep. 62 (4), 651 (2017).

    Article  ADS  Google Scholar 

  51. A. L. Khoroshilov, A. N. Azarevich, A. V. Bogach, et al., J. Low Temp. Phys. 185, 522 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Dudka.

Additional information

Original Russian Text © A.P. Dudka, N.E. Novikova, 2017, published in Kristallografiya, 2017, Vol. 62, No. 6, pp. 1022–1028.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudka, A.P., Novikova, N.E. Description of the atomic disorder (local order) in crystals by the mixed-symmetry method. Crystallogr. Rep. 62, 1009–1015 (2017). https://doi.org/10.1134/S1063774517060098

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774517060098

Navigation