Skip to main content
Log in

Electrical and thermal conductivities of congruently melting single crystals of isovalent M 1 − x MxF2 solid solutions (M, M′ = Ca, Sr, Cd, Pb) in relation to their defect fluorite structure

  • Physical Properties of Crystals
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The electrical and thermal conductive properties of two-component single crystals of Pb0.67Cd0.33F2, Ca0.59Sr0.41F2, and Cd0.77Sr0.23F2 solid solutions with fluorite-type structure (CaF2), characterized by congruent melting (presence of minima in melting curves) and uniform distribution of components in the crystal bulk. Pb0.67Cd0.33F2 crystals, in contrast to isostructural Ca0.59Sr0.41F2 and Cd0.77Sr0.23F2 crystals, are characterized by high fluorine-ion electrical conductivity (σ = 0.02 S/m at 293 K); low ion-transport activation enthalpy (ΔH ≈ 0.4 eV); low thermal conductivity (k = 1.1 W/mK at 300 K); and glassy behavior of heat transfer, which is atypical for crystalline state. This anomalous behavior of the electrical and thermal conductivities of Pb0.67Cd0.33F2 crystals is due to the strong structural disordering of the anionic subsystem (which is retained at room temperature) as a result of isovalent replacements of Pb2+ cations with Cd2+ cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. P. Sobolev, The Rare Earth Trifluorides, Part 2: Introduction to Materials Science of Multicomponent Metal Fluoride Crystals (Institute of Crystallography, Moscow, 2001; Institut d’Estudis Catalans, Barcelona, 2001).

    Google Scholar 

  2. M. P. O’Horo and W. D. White, J. Am. Ceram. Soc. 54 (11), 588 (1971).

    Article  Google Scholar 

  3. A. Kozak, M. De Samouel, and A. Chretien, Rev. Chim. Miner. 8 (6), 805 (1971).

    Google Scholar 

  4. I. V. Murin and S. V. Chernov, Neorg. Mater. 8 (1), 168 (1982).

    Google Scholar 

  5. H. Podsiadlo, J. Therm. Anal. Calorim. 54 (3), 863 (1998).

    Article  Google Scholar 

  6. N. I. Sorokin, I. I. Buchinskaya, and B. P. Sobolev, Zh. Neorg. Khim. 37 (12), 2653 (1992).

    Google Scholar 

  7. I. I. Buchinskaya and P. P. Fedorov, Usp. Khim. 73 (4), 404 (2004).

    Article  Google Scholar 

  8. I. Kosacki and E. Dynowska, J. Cryst. Growth 50 (2), 575 (1980).

    Article  ADS  Google Scholar 

  9. M. A. Silva, Y. Messaddeq, V. Briois, et al., Solid State Ionics 147 (1—2), 135 (2002).

    Article  Google Scholar 

  10. N. I. Sorokin, I. I. Buchinskaya, and B. P. Sobolev, Zh. Neorg. Khim. 43 (11), 1773 (1998).

    Google Scholar 

  11. B. P. Sobolev, A. A. Bystrova, I. I. Buchinskaya, et al., RF Patent RU 2061114 (May 27, 1996).

    Google Scholar 

  12. P. P. Fedorov, I. I. Buchinskaya, E. A. Zhurova, et al., Abstrs. Conf.: Structure and Properties of Crystalline Materials, Dubna, March 4—6, 1997, p. 42.

    Google Scholar 

  13. V. Trnovcova, P. P. Fedorov, M. Ozvoldova, et al., J. Optoelectron. Adv. Mater. 5 (3), 627 (2003).

    Google Scholar 

  14. V. M. Buznik, A. A. Sukhovskoi, V. A. Vopilov, et al., Zh. Neorg. Khim. 42 (12), 2092 (1997).

    Google Scholar 

  15. A. N. Matsulev, Yu. N. Ivanov, A. I. Livshits, et al., Zh. Neorg. Khim. 45 (2), 296 (2000).

    Google Scholar 

  16. V. Trnovcova, P. P. Fedorov, I. I. Buchinskaya, et al., Solid State Ionics 119 (1—4), 181 (1999).

    Article  Google Scholar 

  17. N. I. Sorokin, B. P. Sobolev, and M. Briter, Phys. Solid State 44 (8), 1579 (2002).

    Article  ADS  Google Scholar 

  18. P. A. Popov, A. V. Matovnikov, N. V. Moiseev, et al., Crystallogr. Rep. 60 (1), 111 (2015).

    Article  ADS  Google Scholar 

  19. N. I. Sorokin, I. I. Buchinskaya, E. A. Sul’yanova, and B. P. Sobolev, Elektrokhimiya 41 (5), 627 (2005).

    Google Scholar 

  20. D. N. Karimov, O. N. Komar’kova, N. I. Sorokin, et al., Crystallogr. Rep. 55 (3), 518 (2010).

    Article  ADS  Google Scholar 

  21. B. P. Sobolev, The Rare Earth Trifluorides, Part 1: The High Temperature Chemistry of the Rare Earth Trifluorides (Institute of Crystallography, Moscow, 2000; Institut d’Estudis Catalans, Barcelona, 2000).

    Google Scholar 

  22. I. I. Buchinskaya and P. P. Fedorov, Crystallogr. Rep. 49 (2), 279 (2004).

    Article  ADS  Google Scholar 

  23. A. S. Dworkin and M. A. Bredig, J. Phys. Chem. 72 (4), 1277 (1968).

    Article  Google Scholar 

  24. I. Kosacki, A. P. Litvinchuk, J. J. Tarasov, and M. Ya. Valakh, J. Phys.: Condens. Matter 1 (5), 929 (1989).

    ADS  Google Scholar 

  25. R. D. Shannon, Acta Crystallogr. A 32 (5), 751 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  26. I. Kosacki, Appl. Phys. A 49 (4), 413 (1989).

    Article  ADS  Google Scholar 

  27. T. T. Netshisaulu, A. V. Chadwick, P. E. Ngoepe, and C. R. A. Catlow, J. Phys.: Condens. Matter 17 (41), 6575 (2005).

    ADS  Google Scholar 

  28. A. K. Ivanov-Shits, N. I. Sorokin, P. P. Fedorov, and B. P. Sobolev, Solid State Ionics 31 (4), 253 (1989).

    Article  Google Scholar 

  29. A. K. Ivanov-Shits, N. I. Sorokin, P. P. Fedorov, and B. P. Sobolev, Solid State Ionics 31 (4), 269 (1989).

    Article  Google Scholar 

  30. A. K. Ivanov-Shits, N. I. Sorokin, P. P. Fedorov, and B. P. Sobolev, Solid State Ionics 37 (1—2), 125 (1990).

    Article  Google Scholar 

  31. A. K. Ivanov-Shits, N. I. Sorokin, S. R. Arutyunyan, et al., Fiz. Tverd. Tela 28 (4), 1235 (1986).

    Google Scholar 

  32. P. A. Popov and P. P. Fedorov, Thermal Conductivity of Fluoride Optical Materials (Desyatochka, Bryansk, 2012) [in Russian].

    Google Scholar 

  33. Yu. D. Tret’yakov, Neorg. Mater. 21 (5), 693 (1985).

    Google Scholar 

  34. P. P. Fedorov and P. A. Popov, Nanosyst.: Phys., Chem., Math. 4 (1), 148 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Sorokin.

Additional information

Original Russian Text © N.I. Sorokin, D.N. Karimov, I.I. Buchinskaya, P.A. Popov, B.P. Sobolev, 2015, published in Kristallografiya, 2015, Vol. 60, No. 4, pp. 586–590.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokin, N.I., Karimov, D.N., Buchinskaya, I.I. et al. Electrical and thermal conductivities of congruently melting single crystals of isovalent M 1 − x MxF2 solid solutions (M, M′ = Ca, Sr, Cd, Pb) in relation to their defect fluorite structure. Crystallogr. Rep. 60, 532–536 (2015). https://doi.org/10.1134/S1063774515040215

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774515040215

Keywords

Navigation