Skip to main content
Log in

Structural mechanisms of superionic conductivity in M 1−x R x F2+x single crystals

  • Physical Properties of Crystals
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The relationship between the superionic transport in fluorite phases M 1 − x R x F2 + x (M = Ca, Sr, or Ba; R are rare earth elements) and their defect structure has been analyzed. The superionic conductivity of M 1 − x R x F2 + x crystals is provided by the high concentration of charge carriers. However, the carrier concentration is several tens of times lower than the concentration of anionic defects, which is explained by the presence of defect regions (DRs), which partially block carriers. The dependence of the superionic conductivity of M 1 − x R x F2 + x phases on the RF3(x) content has a percolation nature. Crystals of these phases are divided into two groups with respect to the percolation threshold: x p, 1 = 2–3 mol % RF3 and x p, 2 = 7–8 mol % RF3. The corresponding DR volumes are 3000–4000 Å3 (x p, 1) and 500–700 Å3 (x p, 2). The x p, 1, and x p, 2 values correlate, respectively, with the octahedral cubic {M 14 − p R p F68 − 69} and tetrahedral {M 4 − p R p F26} clusters, which are DR cores. The DR model and cluster structure are indicative of the heterogeneity of nonstoichiometric M 1 − x R x F2 + x crystals at the nanoscale level with respect to the chemical composition and the electrical and crystallochemical (coordinations of M and R) characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. I. Sorokin and B. P. Sobolev, Crystallogr. Rep. 52(5), 842 (2007).

    Article  ADS  Google Scholar 

  2. B. P. Sobolev, A. M. Golubev, and P. Errero, Crystallogr. Rep. 48(1), 141 (2003).

    Article  ADS  Google Scholar 

  3. B. P. Sobolev, The Rare Earth Trifluorides, Part 2: Introduction to Materials Science of Multicomponent Metal Fluoride Crystals (Institute of Crystallography, Moscow, 2001; Institut d’Estudis Catalans, Barcelona, 2001).

    Google Scholar 

  4. B. P. Sobolev, The Rare Earth Trifluorides, Part 1: The High Temperature Chemistry of the Rare Earth Trifluorides (Institute of Crystallography, Moscow, 2000; Institut d’Estudis Catalans, Barcelona, 2000).

    Google Scholar 

  5. J. S. Anderson, Problems of Nonstoichiometry, Ed. by A. Rabenau (North Holland, Amsterdam, 1970), p. 355.

  6. V. B. Aleksandrov and L. S. Garashina, Dokl. Akad. Nauk SSSR 189(2), 307 (1969).

    Google Scholar 

  7. A. K. Ivanov-Shits, N. I. Sorokin, P. P. Fedorov, et al., Fiz. Tverd. Tela 25(6), 1748 (1983).

    Google Scholar 

  8. A. K. Ivanov-Shits, N. I. Sorokin, P. P. Fedorov, et al., Solid State Ionics 31(4), 253 (1989).

    Article  Google Scholar 

  9. A. K. Ivanov-Shits, N. I. Sorokin, P. P. Fedorov, et al., Solid State Ionics 31(4), 269 (1989).

    Article  Google Scholar 

  10. A. K. Ivanov-Shits, N. I. Sorokin, P. P. Fedorov, et al., Solid State Ionics 37(1-2), 125 (1990).

    Article  Google Scholar 

  11. N. I. Sorokin, Elektrokhimiya 42(7), 828 (2006).

    Google Scholar 

  12. N. I. Sorokin, D. N. Karimov, E. A. Sul’yanova, et al., Crystallogr. Rep. 55(4), 662 (2010).

    Article  ADS  Google Scholar 

  13. A. K. Ivanov-Shits, N. I. Sorokin, B. P. Sobolev, et al., Fiz. Tverd. Tela 28(8), 2552 (1986).

    Google Scholar 

  14. N. I. Sorokin, Kristallografiya 38(1), 245 (1993).

    Google Scholar 

  15. A. S. Dworkin and M. A. Bredig, J. Phys. Chem. 72(4), 1277 (1968).

    Article  Google Scholar 

  16. P. P. Fedorov and B. P. Sobolev, J. Less-Common Met. 63, 31 (1979).

    Article  Google Scholar 

  17. V. M. Goldschmidt, T. Barth, G. Lunde, et al., Geochemische Verteilungsgesetze der Elemente. VII. Skrift Norske Vid. Acad. Oslo. I. Mat.-Nat. Klasse 1(2), 1 (1926).

    Google Scholar 

  18. Crystals with the Fluorite Structure, Ed. by W. Hayes (Clarendon, Oxford, 1974).

    Google Scholar 

  19. A. F. Cheetham, B. E. F. Fender, B. J. Taylor, et al., Solid State Commun. 8(3), 171 (1970).

    Article  ADS  Google Scholar 

  20. D. J. Bevan, O. Greis, and J. Strahle, Acta Crystallogr. A 36, 889 (1980).

    Article  ADS  Google Scholar 

  21. L. A. Muradyan, B. A. Maksimov, and V. I. Simonov, Koord. Khim. 12(10), 1398 (1986).

    Google Scholar 

  22. P. P. Fedorov, Buttl. Soc. Cat. Cien. 12(2), 349 (1991).

    Google Scholar 

  23. S. Hull and C. C. Wilson, J. Solid State Chem. 100, 101 (1992).

    Article  ADS  Google Scholar 

  24. J. P. Laval, A. Mikou, B. Frit, et al., Solid State Ionics 28–30, 1300 (1988).

    Article  Google Scholar 

  25. N. B. Grigor’eva, L. P. Otroshchenko, B. A. Maksimov, et al., Crystallogr. Rep. 41(1), 45 (1996).

    ADS  Google Scholar 

  26. N. B. Grigor’eva, B. A. Maksimov, L. P. Otroshchenko, et al., Crystallogr. Rep. 43(3), 376 (1998).

    ADS  Google Scholar 

  27. A. M. Golubev and V. I. Simonov, Kristallografiya 31(3), 478 (1986).

    Google Scholar 

  28. B. P. Sobolev, A. M. Golubev, L. P. Otroshchenko, et al., Crystallogr. Rep. 48(6), 944 (2003).

    Article  ADS  Google Scholar 

  29. E. A. Sul’yanova, V. N. Molchanov, and B. P. Sobolev, Crystallogr. Rep. 53(4), 565 (2008).

    Article  ADS  Google Scholar 

  30. B. A. Maksimov, Yu. B. Gubina, E. L. Belokoneva, et al., Crystallogr. Rep. 47(3), 372 (2002).

    Article  ADS  Google Scholar 

  31. D. J. M. Bevan, M. J. McCall, S. E. Ness, et al., Eur. J. Solid State Chem. 25(5–6), 517 (1988).

    Google Scholar 

  32. B. A. Maksimov, X. Solans, A. P. Dudka, et al., Crystallogr. Rep. 41(1), 50 (1996).

    ADS  Google Scholar 

  33. E. A. Sul’yanova, V. N. Molchanov, I. A. Verin, et al., Crystallogr. Rep. 54(3), 516 (2009).

    Article  ADS  Google Scholar 

  34. A. M. Golubev, Kristallografiya 34(6), 1457 (1989).

    Google Scholar 

  35. A. M. Golubev, L. P. Otroshchenko, V. N. Molchanov, et al., Crystallogr. Rep. 54(3), 423 (2009).

    Article  ADS  Google Scholar 

  36. A. K. Ivanov-Shits, N. I. Sorokin, L. A. Muradyan, et al., Proc. IX All-Union Conf. on the Physical Chemistry and Electrochemistry of Ionic Melts and Solid Electrolytes, Sverdlovsk, 1987), Vol. 3,Part 1, p. 109.

  37. P. P. Fedorov and B. P. Sobolev, Kristallografiya 37(5), 1210 (1992).

    Google Scholar 

  38. O. Greis and J. M. Haschke, Handbook on the Physics and Chemistry of Rare Earths, Ed. by K. A. Gscheidner and L. R. Eyring (North-Holland, Amsterdam, 1982), Vol. 5, Ch. 45, p. 387.

  39. F. Kadlec, F. Moussa, P. Simon, et al., Mater. Sci. Eng. B 57, 234 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Sorokin.

Additional information

Original Russian Text © N.I. Sorokin, A.M. Golubev, B.P. Sobolev, 2014, published in Kristallografiya, 2014, Vol. 59, No. 2, pp. 275–285.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorokin, N.I., Golubev, A.M. & Sobolev, B.P. Structural mechanisms of superionic conductivity in M 1−x R x F2+x single crystals. Crystallogr. Rep. 59, 238–247 (2014). https://doi.org/10.1134/S1063774514010155

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774514010155

Keywords

Navigation