Skip to main content
Log in

The Lyman-Alpha Forest and the Ultraviolet Background

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The \(Ly_{\alpha}\) forest observed in the spectra of quasars allows the evolution of the structure of the Universe and the properties of the ultraviolet (UV) background up to redshifts \({\sim}\)6 to be studied. An analysis of the properties of \({\sim}\)6000 \(Ly_{\alpha}\) forest lines observed at redshifts \(4.5\geq z\geq 2\) shows that this forest can be formed by the absorption of radiation from quasars by strongly ionized hydrogen concentrated in dark matter (DM) halos and the intergalactic medium. We propose a physical model of absorbers that allows the observed characteristics of absorption lines to be associated with the properties of DM halos and the surrounding UV background. We show that the Doppler parameter and the gas temperature are determined by the injection energy being released during hydrogen photoionization and depend only on the spectrum of the surrounding UV background. In contrast, the observed number density of neutral hydrogen depends both on the intensity and spectrum of the UV background and on the mass and density of the DM halos. Our analysis can be used to distinguish the limited population of DM halos observed as \(Ly_{\alpha}\) lines among the set of all DM halos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

REFERENCES

  1. P. A. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. Banday, R. Barreiro, et al. (Planck Collab.), Astron. Astrophys. 594, 13 (2016).

    Google Scholar 

  2. J. Bahcal and J. Peebles, Astrophys. J. 156, L7 (1969).

    Article  ADS  Google Scholar 

  3. J. Black, Mon. Not. R. Astron. Soc. 197, 5538 (1981).

    Article  Google Scholar 

  4. A. Boksenberg and W. Sargent, Astrophys. J. Suppl. Ser. 218, 7 (2015).

    Article  ADS  Google Scholar 

  5. J. Bolton, E. Puchwein, D. Sijacki, M. Haehnelt, T.-S. Kim, A. Meiksin, J. Regan, and M. Viel, Mon. Not. R. Astron. Soc. 464, 897 (2017).

    Article  ADS  Google Scholar 

  6. J. Bolton, G. Prakash, M. Haehnelt, et al., arXiv: 2111.0960 (2022).

  7. J. Bullock and M. Boylan-Kolchin, Ann. Rev. 55, 343 (2017).

    Google Scholar 

  8. J. Cen, J. Miralda-Escudo, J. Ostriker, and M. Rauch, Astrophys. J. 437, L9 (1994).

    Article  ADS  Google Scholar 

  9. C. Danforth, B. Keeney, E. Tilton, J. Shull, J. Stocke, M. Stevans, M. Pieri, B. Savage, et al., Astrophys. J. 817, 111 (2016).

    Article  ADS  Google Scholar 

  10. T. Dawoodbhoy, P. Shapiro, P. Ocvirk, et al., Mon. Not. R. Astron. Soc. 480, 1740 (2018).

    Article  ADS  Google Scholar 

  11. M. Demiański and A. Doroshkevich, Mon. Not. R. Astron. Soc. 354, 183 (2004).

    Article  ADS  Google Scholar 

  12. M. Demiański and A. Doroshkevich, Astron. Astrophys. Trans. 30, 185 (2017).

    ADS  Google Scholar 

  13. M. Demiański and A. Doroshkevich, Astron. Rep. 62, 859 (2018).

    Article  ADS  Google Scholar 

  14. M. Demiański, A. Doroshkevich, and V. Turchaninov, Mon. Not. R. Astron. Soc. 371, 915 (2006).

    Article  ADS  Google Scholar 

  15. M. Demiański, A. Doroshkevich, and T. Larchenkova, Astron. Lett. 46, 359 (2020).

    Article  ADS  Google Scholar 

  16. D. Eisenstein, I. Zehavi, D. Hogg, et al., Astrophys. J. 633, 560 (2005).

    Article  ADS  Google Scholar 

  17. M. Garny, T. Konstandin, L. Sagunski, and S. Tulin, J. Cosmol. Astropart. Phys. 09, 011 (2018).

  18. S. A. Grebenev and R. A. Sunyaev, Astron. Lett. 45, 791 (2020).

    Article  ADS  Google Scholar 

  19. F. Haardt and P. Madau, Astrophys. J. 746, 125 (2012).

    Article  ADS  Google Scholar 

  20. S. Ikeuchi, Astrophys. Space Sci. 118, 509 (1986).

    Article  ADS  Google Scholar 

  21. V. Irsic and M. McQuinn, J. Cosmol. Astropart. Phys. 04, 026 (2018).

  22. V. Irsic, M. Viel, T. Berg, V. D’Odorico, M. Haehnelt, S. Cristiani, G. Cupani, T.-S. Kim, et al., Mon. Not. R. Astron. Soc. 466, 4332 (2017).

    ADS  Google Scholar 

  23. S. Kaplan and S. Pikel’ner, Interstellar Medium (Fizmatgiz, Moscow, 1963; Harvard Univ. Press, Cambridge, MA, 1982).

  24. T.-S. Kim, A. Partl, R. Carswell, and V. Muller, Astron. Astrophys. 552, A77 (2013).

    Article  Google Scholar 

  25. A. Klypin, I. Karachentsev, D. Makarov, and O. Nasonova, Mon. Not. R. Astron. Soc. 454, 1798 (2015).

    Article  ADS  Google Scholar 

  26. E. Komatsu et al., Astrophys. J. Suppl. Ser. 182, 18 (2011).

    Article  ADS  Google Scholar 

  27. D. Martinez-Delgado, R. Lasker, M. Ssharina, E. Toloba, J. Fliri, R. Beaton, D. Valls-Gabaud, I. Karachentsev, et al., Astrophys. J. 151, 96 (2016).

    Google Scholar 

  28. M. McQuinn, Ann. Rev. 54, 313 (2016).

    Google Scholar 

  29. A. Meiksin, Rev. Mod. Phys. 81, 1405 (2009).

    Article  ADS  Google Scholar 

  30. M. Molaro, V. Irsic, J. Bolton, et al., Mon. Not. R. Astron. Soc. 500, 61 (2022).

    Google Scholar 

  31. T. Naab and J. Ostriker, Ann. Rev. 55, 59 (2017).

    Google Scholar 

  32. J. Nawarro, C. Frenk, and S. White, Mon. Not. R. Astron. Soc. 275, 720 (1997); Astrophys. J.490, 493 (1997).

  33. N. Palanque-Delabouille, C. Yeche, J. Baur, et al., J. Cosmol. Astropart. Phys. 11, 011 (2015).

  34. M. Rees, Mon. Not. R. Astron. Soc. 218, 25 (1986).

    Article  ADS  Google Scholar 

  35. J. Roman and I. Trujillo, Mon. Not. R. Astron. Soc. 468, 703 (2017).

    Article  ADS  Google Scholar 

  36. A. Rorai, G. Becker, M. Haehnelt, R. F. Carswell, J. S. Bolton, S. Cristiani, V. D’Odorico, G. Cupani, et al., Mon. Not. R. Astron. Soc. 466, 2690 (2017).

    Article  ADS  Google Scholar 

  37. A. Rosell, M. Rodrigues-Monroy, M. Crocce, et al., Mon. Not. R. Astron. Soc. 509, 7 (2022).

    Google Scholar 

  38. J. Schaye, T. Theuns, A. Leonard, and G. Efstathiou, Mon. Not. R. Astron. Soc. 310, 57 (1999).

    Article  ADS  Google Scholar 

  39. D. Shi, X. Zheng, H. Zhao, et al., arXiv: 1708.00013 (2017).

  40. M. Tegmark and M. Zaldarriaga, Phys. Rev. D 66, 103508 (2002).

    Article  ADS  Google Scholar 

  41. S. Tonnesen, B. Smith, J. Kollmeier, and R. Cen, Astrophys. J. 845, 47 (2017).

    Article  ADS  Google Scholar 

  42. J. Tumlinson, M. Peebles, and J. Werk, Ann. Rev. 55, 389 (2017).

    Google Scholar 

  43. B. Villasenor, B. Robertson, P. Madau, and E. Schneider, arXiv: 2111.00019 (2021).

  44. M. Walker, M. Mateo, E. Olszewski, J. Penarrubia, N. Evans, and G. Gilmore, Astrophys. J. 704, 1274 (2009).

    Article  ADS  Google Scholar 

  45. R. Wechsler and J. Tinker, Ann. Rev. 56, 435 (2018).

    Google Scholar 

  46. A. Wolfe, E. Gawiser, and J. Prochaska, Ann. Rev. Astron. Astrophys. 43, 861 (2005).

    Article  ADS  Google Scholar 

  47. Ya. Zeldovich, Astron. Astrophys. 5, 84 (1970).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Larchenkova.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demiański, M.I., Doroshkevich, A.G. & Larchenkova, T.I. The Lyman-Alpha Forest and the Ultraviolet Background. Astron. Lett. 48, 361–369 (2022). https://doi.org/10.1134/S1063773722070040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773722070040

Keywords:

Navigation