Skip to main content
Log in

Broadband Analysis of the Wind System X1908+075 Based on NuSTAR Data

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We present the results of our spectral and timing analysis of the X-ray pulsar X1908+075 based on data from the NuSTAR observatory in the wide X-ray energy range 3–79 keV. Along with a detailed analysis of the source’s averaged spectrum, high-precision spectra corresponding to different phases of the neutron star spin cycle have been obtained for the first time. The Comptonization model is shown to describe well the source’s spectrum, and the evolution of its parameters as a function of the pulse phase has been traced. For all spectra (the averaged and phase-resolved ones) in the energy range 5–55 keV we have searched for the cyclotron absorption line. The derived upper limit on the optical depth of the cyclotron line \(\tau\sim 0.16\) (1\(\sigma\)) points to the absence of this feature in the specified energy range, which provides a constraint on the neutron star surface magnetic field: \(B<5.6\times 10^{11}\) or >6.2 \(\times 10^{12}\) G. For the first time we have analyzed the change in the pulse profile of X1908+075 as the source’s intensity changes. In particular, the main evolution of the pulse profile is shown to occur at energies below 10 keV. At the same time, the observed evolution of the pulse profile points to the presence of several emitting regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. P. A. Boldin, S. S. Tsygankov, and A. A. Lutovinov, Astron. Lett. 39, 375 (2013).

    Article  ADS  Google Scholar 

  2. W. Coburn, W. A. Heindl, R. E. Rothschild, D. E. Gruber, I. Kreykenbohm, J. Wilms, P. Kretschmar, and R. Staubert, Astrophys. J. 580, 394 (2002).

    Article  ADS  Google Scholar 

  3. R. H. D. Corbet, Mon. Not. R. Astron. Soc. 220, 1047 (1986).

    Article  ADS  Google Scholar 

  4. R. H. D. Corbet and H. A. Krimm, Astrophys. J. 778, 45 (2013).

    Article  ADS  Google Scholar 

  5. R. Farinelli and L. Titarchuk, Astrophys. J. 525, A102 (2011).

    Google Scholar 

  6. E. V. Filippova, S. S. Tsygankov, A. A. Lutovinov, and R. A. Sunyaev, Astron. Lett. 31, 729 (2005).

    Article  ADS  Google Scholar 

  7. R. Giacconi, S. Murray, H. Gursky, E. Kellogg, E. Schreier, and H. Tananbaum, Astrophys. J. 178, 281 (1972).

    Article  ADS  Google Scholar 

  8. F. A. Harrison, W. W. Craig, F. E. Christensen, Ch. J. Hailey, W. W. Zhang, et al., Astrophys. J. 770, 103 (2013).

    Article  ADS  Google Scholar 

  9. G. K. Jaisawal, S. Naik, C. G. Ho Wynn, N. Kumari, P. Epili, and G. Vasilopoulos, Mon. Not. R. Astron. Soc. 498, 4830 (2020).

    Article  ADS  Google Scholar 

  10. R. A. Krivonos, S. S. Tsygankov, A. A. Lutovinov, J. A. Tomsick, D. Chakrabarty, M. Bachetti, et al., Astrophys. J. 809, 140 (2015).

    Article  ADS  Google Scholar 

  11. A. M. Levine, S. Rappaport, R. Remillard, and A. Savcheva, Astrophys. J. 617, 1284 (2004).

    Article  ADS  Google Scholar 

  12. A. A. Lutovinov and S. S. Tsygankov, Astron. Lett. 35, 433 (2009).

    Article  ADS  Google Scholar 

  13. A. A. Lutovinov, S. S. Tsygankov, K. A. Postnov, R. A. Krivonos, S. V. Molkov, and J. A. Tomsick, Mon. Not. R. Astron. Soc. 466, 593 (2017).

    Article  ADS  Google Scholar 

  14. S. Martínez-Núñez, A. Sander, A. Gímenez-García, A. Gónzalez-Galán, J. M. Torrejón, C. Gónzalez-Fernández, and W. R. Hamann, Astron. Astrophys. 578, A107 (2015).

    Article  ADS  Google Scholar 

  15. N. Shakura, K. Postnov, A. Kochetkova, and L. Hjalmarsdotter, Mon. Not. R. Astron. Soc. 420, 216 (2012).

    Article  ADS  Google Scholar 

  16. R. Staubert, J. Trumper, E. Kendziorra, D. Klochkov, K. Postnov, P. Kretschmar, K. Pottschmidt, F. Haberl, et al., Astron. Astrophys. 622, A61 (2019).

    Article  Google Scholar 

  17. L. Titarchuk, Astrophys. J. 434, 570 (1994).

    Article  ADS  Google Scholar 

  18. J. M. Torrejón, N. S. Schulz, M. A. Nowak, and T. R. Kallman, Astrophys. J. 715, 947 (2010).

    Article  ADS  Google Scholar 

  19. S. S. Tsygankov and A. A. Lutovinov, Astron. Lett. 31, 99 (2005).

    Google Scholar 

  20. L. Wen, R. A. Remillard, and H. V. Bradt, Astrophys. J. 532, 1119 (2000).

    Article  ADS  Google Scholar 

  21. N. E. White, J. H. Swank, and S. S. Holt, Astrophys. J. 270, 711 (1983).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (project no. 20-32-90242).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Shtykovsky.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shtykovsky, A.E., Arefiev, V.A. & Lutovinov, A.A. Broadband Analysis of the Wind System X1908+075 Based on NuSTAR Data. Astron. Lett. 48, 284–292 (2022). https://doi.org/10.1134/S1063773722060068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773722060068

Keywords:

Navigation