Skip to main content
Log in

Forced Photometry for Pan-STARRS1 Objects Based on WISE Data

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We discuss the technique and results of photometric measurements based on data from the WISE infrared survey for all Pan-STARRS1 objects under the assumption that the object coordinates are known (‘‘forced’’ photometry). The photometry has been performed by taking into account a complete point spread function model and a refined background model in the WISE survey. The fluxes or upper limits on the flux in the 3.4 and 4.6 \(\mu\)m bands have been measured for more than three billion optical objects in the northern sky at declinations \(\delta>{-}30^{\circ}\). These measurements will be used to identify galaxy clusters, active galactic nuclei, and quasars in the all-sky surveys of the eROSITA and Mikhail Pavlinsky ART-XC telescopes onboard the Spektr–Roentgen–Gamma space observatory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://unwise.me/

  2. https://panstarrs.stsci.edu/

  3. https://mastweb.stsci.edu/mcasjobs/

  4. https://outerspace.stsci.edu/display/PANSTARRS

  5. doi:10.5281/zenodo.361034

  6. http://wise-forced.cosmos.ru/

  7. https://mastweb.stsci.edu/mcasjobs/

  8. https://irsa.ipac.caltech.edu/data/SPITZER/DeepDrill/

REFERENCES

  1. R. A. Burenin, Astron. Lett. 43, 507 (2017).

    Article  ADS  Google Scholar 

  2. R. A. Burenin, I. F. Bikmaev, M. R. Gil’fanov, A. A. Grokhovskaya, S. N. Dodonov, M. V. Eselevich, I. A. Zaznobin, E. N. Irtuganov, N. S. Lyskova, P. S. Medvedev, A. V. Meshcheryakov, A. V. Moiseev, S. Yu. Sazonov, A. A. Starobinskii, R. A. Syunyaev, et al., Astron. Lett. 47, 443 (2021).

    Article  ADS  Google Scholar 

  3. R. A. Burenin, I. F. Bikmaev, I. M. Khamitov, I. A. Zaznobin, G. A. Khorunzhev, M. V. Eselevich, V. L. Afanas’ev, S. N. Dodonov, Kh.-A. Rubino-Martin, N. Agkhanim, and R. A. Syunyaev, Astron. Lett. 44, 297 (2018).

    Article  ADS  Google Scholar 

  4. K. C. Chambers, E. A. Magnier, N. Metcalfe, H. A. Flewelling, M. E. Huber, C. Z. Waters, et al., arXiv: 1612.05560 (2016).

  5. R. M. Cutri, E. L. Wright, T. Conrow, J. W. Fowler, P. R. M. Eisenhardt, C. Grillmair, et al., Explanatory Supplement to the AllWISE Data Release Products (2013).

  6. R. M. Cutri, E. L. Wright, T. Conrow, J. W. Fowler, P. R. M. Eisenhardt, C. Grillmair, et al., VizieR Online Data Catalog (2021), p. II/328.

  7. A. Dey, D. J. Schlegel, D. Lang, R. Blum, K. Burleigh, X. Fan, et al., Astron. J. 157, 168 (2019).

    Article  ADS  Google Scholar 

  8. G. G. Fazio, J. L. Hora, L. E. Allen, M. L. N. Ashby, P. Barmby, L. K. Deutsch, et al., Astrophys. J. Suppl. Ser. 154, 10 (2004).

    Article  ADS  Google Scholar 

  9. R. G. Kron, Astrophys. J. Suppl. Ser. 43, 305 (1980).

    Article  ADS  Google Scholar 

  10. M. Lacy, J. A. Surace, D. Farrah, K. Nyland, J. Afonso, W. N. Brandt, et al., Mon. Not. R. Astron. Soc. 501, 892 (2021).

    Article  ADS  Google Scholar 

  11. D. Lang, Astron. J. 147, 108 (2014).

    Article  ADS  Google Scholar 

  12. D. Lang, D. W. Hogg, and D. J. Schlegel, Astron. J. 151, 36 (2016).

    Article  ADS  Google Scholar 

  13. E. A. Magnier, E. F. Schlafly, D. P. Finkbeiner, J. L. Tonry, B. Goldman, S. Röser, et al., Astrophys. J. Suppl. Ser. 251, 6 (2020).

    Article  ADS  Google Scholar 

  14. A. Mainzer, J. Bauer, R. M. Cutri, T. Grav, J. Masiero, R. Beck, et al., Astrophys. 792, 30 (2014).

    Article  ADS  Google Scholar 

  15. F. Marocco, P. R. M. Eisenhardt, J. W. Fowler, J. D. Kirkpatrick, A. M. Meisner, E. F. Schlafly, et al., Astrophys. J. Suppl. Ser. 253, 8 (2021).

    Article  ADS  Google Scholar 

  16. A. M. Meisner, D. Lang, and D. J. Schlegel, Astron. J. 153, 38 (2017).

    Article  ADS  Google Scholar 

  17. A. M. Meisner, D. Lang, E. F. Schlafly, and D. J. Schlegel, Res. Not. Am. Astron. Soc. 5, 200 (2021).

    ADS  Google Scholar 

  18. M. Pavlinsky, A. Tkachenko, V. Levin, N. Alexandrovich, V. Arefiev, V. Babyshkin, et al., Astron. Astrophys. 650, A42 (2021).

    Article  Google Scholar 

  19. P. Predehl, R. Andritschke, V. Arefiev, V. Babyshkin, O. Batanov, W. Becker, et al., Astron. Astrophys. 647, A1 (2021).

    Article  Google Scholar 

  20. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN. The Art of Scientific Computing (1992).

  21. E. F. Schlafly, A. M. Meisner, and G. M. Green, Astrophys. J. Suppl. Ser. 240, 30 (2019).

    Article  ADS  Google Scholar 

  22. M. F. Skrutskie, R. M. Cutri, R. Stiening, M. D. Weinberg, S. Schneider, J. M. Carpenter, et al., Astron. J. 131, 1163 (2006).

    Article  ADS  Google Scholar 

  23. R. Sunyaev, V. Arefiev, V. Babyshkin, A. Bogomolov, K. Borisov, M. Buntov, et al., arXiv: 2104.13267 (2021).

  24. G. de Vaucouleurs, Ann. Astrophys. 11, 247 (1948).

    ADS  Google Scholar 

  25. A. Vikhlinin, B. R. McNamara, W. Forman, C. Jones, H. Quintana, and A. Hornstrup, Astrophysics 502, 558 (1998).

    Article  Google Scholar 

  26. E. L. Wright, P. R. M. Eisenhardt, A. K. Mainzer, M. E. Ressler, R. M. Cutri, T. Jarrett, et al., Astron. J. 140, 1868 (2010).

    Article  ADS  Google Scholar 

  27. I. A. Zaznobin, R. A. Burenin, A. R. Lyapin, G. A. Khorunzhev, V. L. Afanas’ev, A. A. Grokhovskaya, S. N. Dodonov, M. V. Eselevich, R. I. Uklein, I. F. Bikmaev, I. M. Khamitov, M. R. Gil’fanov, N. S. Lyskova, P. S. Medvedev, and R. A. Syunyaev, Astron. Lett. 47, 141 (2021a).

    Article  ADS  Google Scholar 

  28. I. A. Zaznobin, R. A. Burenin, A. R. Lyapin, G. A. Khorunzhev, V. L. Afanas’ev, A. A. Grokhovskaya, S. N. Dodonov, M. V. Eselevich, R. I. Uklein, I. F. Bikmaev, I. M. Khamitov, M. R. Gil’fanov, N. S. Lyskova, P. S. Medvedev, and R. A. Syunyaev, Astron. Lett. 47, 61 (2021b).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to R.A. Krivonos for his help in organizing access to the measurements on the Internet. Data from the publicly accessible Pan-STARRS1 archive and data from the NASA/IPAC Infrared Science Archive were used in this study.

Funding

This work was supported by the Russian Science Foundation (project no. 21-12-00343).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Burenin.

Additional information

Translated by V. Astakhov

APPENDIX

APPENDIX

The values of the flags presented in our table of photometric measurements are obtained by summing the values of the flags given below. The value of each individual flag can be obtained, as usual, from a bit-by-bit comparison with the total flag.

NOT_IN_FIELD \(=\) 1—the object is outside the unWISE coadd image field.

DUPLICATE \(=\) 2—the object is a duplicate of another object in the Pan-STARRS1 data. No photometric measurements for such an object are carried out.

BAD_PHOT \(=\) 4—there is no photometric measurement because the field is too crowded or a negative flux is obtained in the first pass (in this case, no measurements are carried out, the object flux is set equal to zero).

DO_NOT_FIT \(=\) 8—in the unWISE images on the WISE PSF angular scale there is no signal with a significance higher than \(1.5\sigma\), no measurements of the object flux are carried out, a \(2\sigma\) upper limit on the flux is given in the table.

EXT_SELECTED \(=\) 16—the object was selected as an extended one based on Pan-STARRS1 data, an attempt to determine the extent based on WISE data is made for it.

FIT_EXT \(=\) 32—the object was fitted by the extended source model.

FIT_DEVAUC \(=\) 64—the object was fitted by a centrally symmetric model with a de Vaucouleurs profile. At a positive value of the flag FIT_EXT and a negative value of the flag FIT_DEVAUC it was fitted by a centrally symmetric model with an exponential profile.

PHOTO_STAR \(=\) 128—the object is a star, according to the \((r-i)\) and \((r-W1)\) colors (see the text).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burenin, R.A. Forced Photometry for Pan-STARRS1 Objects Based on WISE Data. Astron. Lett. 48, 153–162 (2022). https://doi.org/10.1134/S1063773722030021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773722030021

Keywords:

Navigation