Skip to main content
Log in

Influence of Radiative Pumping on the HD Rotational Level Populations in Diffuse Molecular Clouds of the Interstellar Medium

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We have performed a theoretical calculation of the influence of radiative pumping on the populations of the rotational levels of the ground vibrational state for HD molecules under conditions of the cold phase of the interstellar medium. Two main excitation mechanisms have been taken into account in our analysis: (i) collisions with atoms and molecules of the interstellar medium and (ii) radiative pumping by the ultraviolet interstellar background. The radiative pumping rate coefficients \(\Gamma_{ij}\) corresponding to the average galactic ultraviolet background in Draine’s model have been determined. The influence of HD self-shielding on the radiative pumping rate coefficients has been studied. The population of the first HD rotational level (\(J=1\)) is shown to be determined mainly by radiative pumping rather than by collisions if the thermal gas pressure \(p_{\rm th}\leq 10^{4}\left(\frac{I_{\textrm{UV}}}{1}\right)\textrm{ K cm}^{-3}\) and the column density \(\log N({\textrm{HD}})<15\). In such clouds the relative population of the HD levels \(N(J=1)/N(J=0)\) turns out to be more sensitive to the ultraviolet background intensity than the relative population of the C I fine-structure levels. Thus, an analysis of the relative HD level population can become an important additional source of information about the physical conditions in the interstellar medium both in our Galaxy and in the forming galaxies of the early Universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The abundance of CO is approximately the same as that of HD.

  2. The rate of the induced transitions is much lower than the rate of the spontaneous ones and they may be neglected.

  3. The population of the second C I\({}^{**}\) level shows approximately the same sensitivity as C I\({}^{*}\).

REFERENCES

  1. H. Abgrall and E. Roueff, Astron. Astrophys. 445, 361 (2006).

    Article  ADS  Google Scholar 

  2. H. Abgrall, E. Roueff, and Y. Viala, Astron. Astrophys. Suppl. Ser. 50, 505 (1982).

    ADS  Google Scholar 

  3. M. M. Asplund, N. Grevesse, A. J. Sauval, and P. Scott, Ann. Rev. Astron. Astrophys. 47, 481 (2009).

    Article  ADS  Google Scholar 

  4. S. A. Balashev, A. V. Ivanchik, and D. A. Varshalovich, Astron. Lett. 36, 761 (2010).

    Article  ADS  Google Scholar 

  5. S. A. Balashev and D. N. Kosenko, Mon. Not. R. Astron. Soc. 492, L45 (2020).

    Article  ADS  Google Scholar 

  6. S. A. Balashev, P. Noterdaeme, H. Rahmani, V. V. Klimenko, C. Ledoux, P. Petitjean, R. Srianand, A. V. Ivanchik, et al., Mon. Not. R. Astron. Soc. 470, 2809 (2017).

    Article  ADS  Google Scholar 

  7. S. A. Balashev, V. V. Klimenko, P. Noterdaeme, J.-K. Krogager, D. A. Varshalovich, A. V. Ivanchik, P. Petitjean, R. Srianand, et al., Mon. Not. R. Astron. Soc. 490, 2668 (2019).

    Article  ADS  Google Scholar 

  8. J. H. Black and A. Dolgarno, Astrophys. J. 203, 132 (1976).

    Article  ADS  Google Scholar 

  9. A. S. Dickinson and D. Richards, J. Phys. B: At. Mol. Phys. 8, 2846 (1975).

    Article  ADS  Google Scholar 

  10. B. T. Draine, Astrophys. J. Suppl. Ser. 36, 595 (1978).

    Article  ADS  Google Scholar 

  11. B. T. Draine and F. Bertoldi, Astrophys. J. 468, 269 (1996).

    Article  ADS  Google Scholar 

  12. D. R. Flower, J. Le Bourlot, G. Pineau des Forets, and E. Roueff, Mon. Not. R. Astron. Soc. 314, 753 (2000).

    Article  ADS  Google Scholar 

  13. A. V. Ivanchik, S. A. Balashev, D. A. Varshalovich, and V. V. Klimenko, Astron. Rep. 59, 100 (2015).

    Article  ADS  Google Scholar 

  14. E. B. Jenkins and T. M. Tripp, Astrophys. J. 734, 32 (2011).

    Article  ADS  Google Scholar 

  15. V. Klimenko, S. A. Balashev, A. V. Ivanchik, and D. A. Varshalovich, Astron. Lett. 42, 137 (2016).

    Article  ADS  Google Scholar 

  16. D. N. Kosenko and S. A. Balashev, J. Phys.: Conf. Ser. 1135, 012009 (2018). doi 10.1088/1742-6596/1135/1/012009

    Article  Google Scholar 

  17. S. Lacour, M. K. Andre, P. Sonnentrucker, F. Le Petit, D. E. Welty, J.-M. Desert, R. Ferlet, E. Roueff, et al., Astron. Astrophys. 430, 967 (2005).

    Article  ADS  Google Scholar 

  18. H. S. Liszt, Astrophys. J. 799, 11 (2015).

    Article  ADS  Google Scholar 

  19. P. Noterdaeme, C. Ledoux, P. Petitjean, F. Le Petit, R. Srianand, and A. Smette, Astron. Astrophys. 474, 393 (2007).

    Article  ADS  Google Scholar 

  20. P. Noterdaeme, R. Srianand, H. Rahmani, P. Petitjean, I. Paris, C. Ledoux, N. Gupta, and S. Lopez, Astron. Astrophys. 577, 24 (2015).

    Article  ADS  Google Scholar 

  21. E. Oliva, A. Tozzi, D. Ferruzzi, M. Riva, M. Genoni, A. Marconi, R. Maiolino, and L. Origlia, Proc. SPIE 10702, 18 (2018).

    Google Scholar 

  22. F. le Petit, E. Roueff, and J. le Bourlot, Astron. Astrophys. 390, 369 (2002).

    Article  ADS  Google Scholar 

  23. B. Shustov, A. I. Gomez de Castro, M. Sachkov, J. C. Vallejo, P. Marcos-Arenal, E. Kanev, I. Savanov, A. Shugarov, et al., Astrophys. Space Sci. 363, 62 (2018).

    Article  ADS  Google Scholar 

  24. A. I. Silva and S. M. Viegas, Mon. Not. R. Astron. Soc. 329, 135 (2002).

    Article  ADS  Google Scholar 

  25. T. P. Snow, T. L. Ross, J. D. Destree, M. M. Drosback, A. G. Jensen, B. L. Rachford, P. Sonnentrucker, and R. Ferlet, Astrophys. J. 688, 1124 (2008).

    Article  ADS  Google Scholar 

  26. L. Spitzer, J. F. Drake, E. B. Jenkins, D. C. Morton, J. B. Rogerson, and D. G. York, Astrophys. J. 181, L116 (1973).

    Article  ADS  Google Scholar 

  27. L. Spitzer, W. D. Cochran, and A. Hirshfeld, Astrophys. J. Suppl. Ser. 28, 373 (1974).

    Article  ADS  Google Scholar 

  28. A. Sternberg and A. Dalgarno, Astrophys. J. Suppl. Ser. 99, 565 (1995).

    Article  ADS  Google Scholar 

  29. D. A. Varshalovich, A. V. Ivanchik, P. Petitjean, R. Srianand, and C. Ledoux, Astron. Lett. 27, 683 (2001).

    Article  ADS  Google Scholar 

  30. D. E. Welty, J. T. Lauroesch, T. Wong, and D. G. York, Astrophys. J. 821, 118 (2016).

    Article  ADS  Google Scholar 

  31. J. Wolcottgreen and Z. Haiman, Mon. Not. R. Astron. Soc. 412, 2603 (2011).

    Article  ADS  Google Scholar 

  32. A. M. Wolfe, E. Gawiser, and J. X. Prochaska, Astrophys. J. 593, 215 (2003).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation (project no. 18-12-00301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Klimenko.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimenko, V.V., Ivanchik, A.V. Influence of Radiative Pumping on the HD Rotational Level Populations in Diffuse Molecular Clouds of the Interstellar Medium. Astron. Lett. 46, 224–234 (2020). https://doi.org/10.1134/S1063773720040064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773720040064

Navigation