Skip to main content
Log in

X-ray Luminosity Function of Quasars at 3 < z < 5 from XMM-Newton Serendipitous Survey Data

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The X-ray luminosity function of distant (3 < z < 5.1) type 1 quasars has been measured. A sample of distant high-luminosity (1045 erg s−1LX,2−10 < 7.5×1045 erg s−1 in the 2–10 keV energy band) quasars from the catalog by Khorunzhev et al. (2016) compiled from the data of the 3XMM-DR4 catalog of the XMM-Newton serendipitous survey and the Sloan Digital Sky Survey (SDSS) has been used. This sample consists of 101 sources. Most of them (90) have spectroscopic redshifts zspec ⩾ 3; the remaining ones are quasar candidates with photometric redshift estimates zphot ⩾ 3. The spectroscopic redshifts of eight sources have been measured with the BTA and AZT-33IK telescopes. Owing to the record sky coverage area (≃250 sq. deg at X-ray fluxes ~10−14 erg s−1 cm−2 in the 0.5–2 keVband) from which the sample was drawn, we have managed to obtain reliable estimates of the space density of distant X-ray quasars with luminosities LX,2−10 > 2×1045 erg s−1 for the first time. Their comoving space density remains constant as the redshift increases from z = 3 to 5 to within a factor of 2. The power-law slope of the X-ray luminosity function of distant quasars at its bright end (above the break) has been reliably constrained for the first time. The range of possible slopes for the quasar luminosity and density evolution model is γ2 = 2.72 +0.19−0.12 ± 0.21, where initially the lower and upper boundaries of γ2 with the remaining uncertainty in the detection completeness of X-ray sources in SDSS and subsequently the statistical error of the slope are specified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Afanas’ev, S. Dodonov, V. Amirkhanyan, and A. Moiseev, Astrofiz. Byull. 71, 514 (2016).

    Google Scholar 

  2. V. Afanasiev and V. Amirkhanyan, Astrophys. Bull. 67, 438 (2012).

    Article  ADS  Google Scholar 

  3. V. Afanasiev and A. Moiseev, Astron. Lett. 31, 193 (2005).

    Article  ADS  Google Scholar 

  4. V. Afanasiev and A. Moiseev, Baltic Astron. 20, 363 (2011).

    ADS  Google Scholar 

  5. J. Aird, K. Nandra, E. Laird, A. Georgakakis, M. Ashby, P. Barmby, A. Coil, J. Huang, et al., Mon. Not. R. Astron. Soc. 401, 2531 (2010).

    Article  ADS  Google Scholar 

  6. J. Aird, A. Coil, A. Georgakakis, K. Nandra, G. Barro, and P. Perez-Gonzalez, Mon. Not. R. Astron. Soc. 451, 1892 (2015).

    Article  ADS  Google Scholar 

  7. H. Akaike, IEEE Trans. Autom. Control 19, 716 (1974).

    Article  ADS  Google Scholar 

  8. M. Akiyama, Y. Ueda, M. Watson, H. Furusawa, T. Takata, C. Simpson, T. Morokuma, T. Yamada, et al., Publ. Astron. Soc. Jpn. 67, 82 (2015).

    Article  ADS  Google Scholar 

  9. S. Alam, F. Albareti, C. Prieto, F. Anders, S. Anderson, B. Andrews, et al., Astrophys. J. Suppl. Ser. 219, 12 (2015).

    Article  ADS  Google Scholar 

  10. D. van den Berk, G. Richards, A. Bauer, M. Strauss, D. Schneider, and T. Heckman, Astron. J. 122, 549 (2001).

    Article  ADS  Google Scholar 

  11. B. Boyle, T. Shanks, B. Peterson, Mon. Not. R. Astron. Soc. 235, 935 (1988).

    Article  ADS  Google Scholar 

  12. R. A. Burenin, A. L. Amvrosov, M. V. Eselevich, V. M. Grigor’ev, V. A. Aref’ev, V. C. Vorob’ev, A. A. Lutovinov, M. G. Revnivtsev, S. Yu. Sazonov, A. Yu. Tkachenko, G. A. Khorunzhev, A. L. Yaskovich, and M. N. Pavlinsky, Astron. Lett. 42, 295 (2016).

    Article  ADS  Google Scholar 

  13. J. Caldwell, D. McIntosh, H. Rix, M. Barden, S. Beckwith, E. Bell, A. Borch, C. Heymans, et al., Astrophys. J. Suppl. Ser. 174, 136 (2008).

    Article  ADS  Google Scholar 

  14. P. Capak, H. Aussel, M. Ajiki, H. McCracken, B. Mobasher, N. Scoville, P. Shopbell, Y. Taniguchi, et al., Astrophys. J. Suppl. Ser. 172, 99 (2007).

    Article  ADS  Google Scholar 

  15. F. Civano, M. Elvis, M. Brusa, A. Comastri, M. Salvato, G. Zamorani, et al., Astrophys. J. Suppl. Ser. 201, 30 (2012).

    Article  ADS  Google Scholar 

  16. R. Cutri, M. Skrutskie, S. van Dyk, C. Beichman, J. Carpenter, T. Chester, et al., NASA/IPAC Infrared Science Arch. 06 (2003). http://adsabs. harvard. edu/abs/2003tmc..book.....C

    Google Scholar 

  17. M. Elvis, F. Civano, C. Vignali, S. Puccetti, F. Fiore, N. Cappelluti, T. Aldcroft, A. Fruscione, et al., Astrophys. J. Suppl. Ser. 184, 158 (2009).

    Article  ADS  Google Scholar 

  18. E. W. Flesch, Publ. Astron. Soc. Austral. 32, 010 (2015); arXiv:1502. 06303

    Article  ADS  Google Scholar 

  19. S. Fotopoulou, J. Buchner, I. Georgantopoulos, G. Hasinger, M. Salvato, A. Georgakakis, N. Cappelluti, P. Ranalli, et al., Astron. Astrophys. 587, 142 (2016).

    Article  ADS  Google Scholar 

  20. P. Gandhi, C. Crawford, and A. Fabian, Mon. Not. R. Astron. Soc. 337, 781 (2002).

    Article  ADS  Google Scholar 

  21. B. Garilli, L. Guzzo, M. Scodeggio, M. Bolzonella, U. Abbas, S. Arnouts, J. Bel, D. Bottini, et al., Astron. Astrophys. 562, 23 (2014).

    Article  Google Scholar 

  22. A. Georgakakis, K. Nandra, E. S. Laird, J. Aird, and M. Trichas, Mon. Not. R. Astron. Soc. 388, 1205 (2008).

    Article  ADS  Google Scholar 

  23. A. Georgakakis, J. Aird, J. Buchner, M. Salvato, M. Menzel, W. Brandt, I. McGreer, T. Dwelly, et al., Mon. Not. R. Astron. Soc. 453, 1946 (2015).

    Article  ADS  Google Scholar 

  24. M. Giavalisco, H. Ferguson, A. Koekemoer, M. Dickinson, D. Alexander, F. Bauer, J. Bergeron, C. Biagetti, et al., Astrophys. J. 600, 93 (2004).

    Article  ADS  Google Scholar 

  25. G. Hasinger, N. Cappelluti, H. Brunner, M. Brusa, A. Comastri, M. Elvis, A. Finoguenov, F. Fiore, et al., Astrophys. J. Suppl. Ser. 172, 29 (2007).

    Article  ADS  Google Scholar 

  26. E. Kalfountzou, F. Civano, M. Elvis, M. Trichas, and P. Green, Mon. Not. R. Astron. Soc. 445, 1430 (2014).

    Article  ADS  Google Scholar 

  27. S. F. Kamus, S. A. Denisenko, N. A. Lipin, V. I. Tergoev, P. G. Papushev, S. A. Druzhinin, Yu. S. Karavaev, and Yu. M. Palachev, J. Opt. Technol. 69, 674 (2002).

    Article  Google Scholar 

  28. G. A. Khorunzhev, R. A. Burenin, A. V. Meshcheryakov, and S. Yu. Sazonov, Astron. Lett. 42, 277 (2016).

    Article  ADS  Google Scholar 

  29. G. A. Khorunzhev, R. A. Burenin, S. Yu. Sazonov, A. L. Amvrosov, and M. V. Eselevich, Astron. Lett. 43, 135 (2017a).

    Google Scholar 

  30. G. Khorunzhev, S. Sazonov, R. Burenin, and M. Eselevich, Front. Astron. Space Sci. (2017b).doi 10. 3389/fspas. 2017. 00037

    Google Scholar 

  31. G. Khorunzhev et al. (2018, in press).

  32. S. Lilly, O. le Fevre, A. Renzini, G. Zamorani, M. Scoddegio, T. Contini, C. Carollo, G. Hasinger, et al., Astrophys. J. Suppl. Ser. 172, 70 (2007).

    Article  ADS  Google Scholar 

  33. M. Longrair and P. Scheuer, Mon. Not. R. Astron. Soc. 151, 45 (1970).

    Article  ADS  Google Scholar 

  34. E. Lusso and G. Risaliti, Astron. Astrophys. 602, 79 (2017).

    Article  ADS  Google Scholar 

  35. E. Lusso, A. Comastri, C. Vignali, G. Zamorani, M. Brusa, R. Gilli, K. Iwasawa, M. Salvato, et al., Astron. Astrophys. 512, 34 (2010).

    Article  Google Scholar 

  36. E. Marchese, R. Della Ceca, A. Caccianiga, P. Severgnini, A. Corral, and R. Fanali, Astron. Astrophys. 539, 48 (2012).

    Article  ADS  Google Scholar 

  37. H. Marshall, H. Tananbaum, Y. Avni, G. Zamorani, et al., Astrophys. J. 269, 35 (1983).

    Article  ADS  Google Scholar 

  38. M. Menzel, A. Merloni, A. Georgakakis, M. Salvato, E. Aubourg, W. Brandt, M. Brusa, J. Buchner, et al., Mon. Not. R. Astron. Soc. 457, 110 (2016).

    Article  ADS  Google Scholar 

  39. A. Merloni, P. Predehl, W. Becker, H. Bohringer, T. Boller, H. Brunner, et al., arxiv. org/pdf/1209. 3114v2 (2014).

    Google Scholar 

  40. A. Meshcheryakov, V. Glazkova, S. Gerasimov, and R. Burenin, and G. A. Khorunzhev, Astron. Lett. 41, 307 (2015).

    Article  ADS  Google Scholar 

  41. T. Miyaji, G. Hasinger, and M. Shmidt, Astron. Astrophys. 353, 25 (2000).

    ADS  Google Scholar 

  42. E. Monier, J. Kennefick, P. Hall, P. Osmer, M. Smith, G. Dalton, and R. Green, Astron. J. 124, 2971 (2002).

    Article  ADS  Google Scholar 

  43. J. Newman, M. Cooper, M. Davis, S. Faber, A. Coil, P. Guhathakurta, D. Koo, A. Phillips, et al., Astrophys. J. Suppl. Ser. 208, 5 (2013).

    Article  ADS  Google Scholar 

  44. M. Page and F. Garrera, Mon. Not. R. Astron. Soc. 311, 433 (2000).

    Article  ADS  Google Scholar 

  45. C. Papovich, R. Cool, D. Eisenstein, E. le Floch, X. Fan, R. Kennicutt, J. Smith, G. Rieke, et al., Astron. J. 132, 231 (2006).

    Article  ADS  Google Scholar 

  46. I. Paris, P. Petitjean, N. Ross, A. Myers, E. Aubourg, A. Streblyanska, S. Bailey, and E. Armengaud, Astron. Astrophys. 597, 25 (2017).

    Article  Google Scholar 

  47. M. Pavlinsky, V. Akimov, V. Levin, I. Lapshov, A. Tkachenko, N. Semena, et al., Proc. SPIE 8147, 5 (2011).

    Google Scholar 

  48. G. Piccinotti, R. Mushotzky, E. Boldt, S. Holt, F. Marshall, P. Serlemitsos, and R. Shafer, Astrophys. J. 253, 485 (1982).

    Article  ADS  Google Scholar 

  49. P. Ranalli, E. Koulouridis, I. Georgantopoulos, S. Fotopoulou, L. Hsu, and M. Salvato, Astron. Astrophys. 590, A80 (2016).

    Google Scholar 

  50. S. Sazonov and I. Khabibullin, Mon. Not. R. Astron. Soc. 466, 1019 (2017).

    Article  ADS  Google Scholar 

  51. S. Sazonov, S. P. Willner, A. D. Goulding, et al., Astrophys. J. 757, 181 (2012).

    Article  ADS  Google Scholar 

  52. G. Schwarz, Ann. Statist. 6, 461 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  53. M. Shmidt, Astrophys. J. 151, 393 (1968).

    Article  ADS  Google Scholar 

  54. M. Shmidt and R. Green, Astrophys. J. 269, 352 (1983).

    Article  ADS  Google Scholar 

  55. C. Stalin, P. Petitjean, R. Srianand, A. Fox, F. Coppolani, and A. Schwope, Mon. Not. R. Astron. Soc. 401, 294 (2010).

    Article  ADS  Google Scholar 

  56. Y. Ueda, M. Watson, I. Stewart, M. Akiyama, A. Schwope, G. Lamer, J. Ebrero, F. Carrera, et al., Astrophys. J. Suppl. Ser. 179, 124 (2008).

    Article  ADS  Google Scholar 

  57. Y. Ueda, M. Akiyama, G. Hasinger, T. Miyaji, and M. Watson, Astrophys. J. 786, 104 (2014).

    Article  ADS  Google Scholar 

  58. F. Vito, R. Gilli, C. Vignali, A. Comastri, M. Brusa, N. Capelluti, and K. Iwasawa, Mon. Not. R. Astron. Soc. 445, 3557 (2014).

    Article  ADS  Google Scholar 

  59. M. Watson, A. Shroder, D. Fyfe, C. Page, G. Lamer, S. Mateos, et al., Astron. Astrophys. 493, 339 (2009).

    Article  ADS  Google Scholar 

  60. E. Wright, P. Eisenhardt, A. Mainzer, M. Ressler, R. Cutri, T. Jarrett, et al., Astron. J. 140, 1868 (2010).

    Article  ADS  Google Scholar 

  61. Y. Xue, B. Luo, W. Brandt, F. Bauer, B. Lehmer, P. Broos, D. Schneider, D. Alexander, et al., Astrophys. J. Suppl. Ser. 195, 10 (2011).

    Article  ADS  Google Scholar 

  62. B. Yencho, A. Barger, L. Trouille, and L. Winter, Astrophys. J. 698, 380 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Khorunzhev.

Additional information

Original Russian Text © G.A. Khorunzhev, S.Yu. Sazonov, R.A. Burenin, 2018, published in Pis’ma v Astronomicheskii Zhurnal, 2018, Vol. 44, Nos. 8–9, pp. 546–568.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorunzhev, G.A., Sazonov, S.Y. & Burenin, R.A. X-ray Luminosity Function of Quasars at 3 < z < 5 from XMM-Newton Serendipitous Survey Data. Astron. Lett. 44, 500–521 (2018). https://doi.org/10.1134/S1063773718090049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773718090049

Keywords

Navigation