Skip to main content
Log in

Geometric Aspects and Testing of the Galactic Center Distance Determination from Spiral Arm Segments

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We consider the problem of determining the geometric parameters of a Galactic spiral arm from its segment by including the distance to the spiral pole, i.e., the distance to the Galactic center (R0). The question about the number of points belonging to one turn of a logarithmic spiral and defining this spiral as a geometric figure has been investigated numerically and analytically by assuming the direction to the spiral pole (to the Galactic center) to be known. Based on the results obtained, in an effort to test the new approach, we have constructed a simplified method of solving the problem that consists in finding the median of the values for each parameter from all possible triplets of objects in the spiral arm segment satisfying the condition for the angular distance between objects. Applying the method to the data on the spatial distribution of masers in the Perseus and Scutum arms (the catalogue by Reid et al. (2014)) has led to an estimate of R0 = 8.8 ± 0.5 kpc. The parameters of five spiral arm segments have been determined from masers of the same catalogue. We have confirmed the difference between the spiral arms in pitch angle. The pitch angles of the arms revealed by masers are shown to generally correlate with R0 in the sense that an increase in R0 leads to a growth in the absolute values of the pitch angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. A. Agekyan, Fundamentals of the Error Theory for Astronomers and Physicists (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  2. V. S. Avedisova, Sov. Astron. Lett. 11, 185 (1985).

    ADS  Google Scholar 

  3. L. A. Balona and M. W. Feast, Mon. Not. R. Astron. Soc. 167, 621 (1974).

    Article  ADS  Google Scholar 

  4. J. Bland-Hawthorn and O. Gerhard, Ann. Rev. Astron. Astrophys. 54, 529 (2016).

    Article  ADS  Google Scholar 

  5. V. V. Bobylev and A. T. Bajkova, Astron. Lett. 39, 759 (2013).

    Article  ADS  Google Scholar 

  6. V. V. Bobylev and A. T. Bajkova, Mon. Not. R. Astron. Soc. 437, 1549 (2014).

    Article  ADS  Google Scholar 

  7. D. I. Casetti-Dinescu, T. M. Girard, L. Jílková, et al., Astron. J. 146, 33 (2013).

    Article  ADS  Google Scholar 

  8. R. M. Catchpole, P. A. Whitelock, M. W. Feast, S. M. G. Hughes, M. Irwin, and C. Alard, Mon. Not. R. Astron. Soc. 455, 2216 (2016).

    Article  ADS  Google Scholar 

  9. D. Crampton, D. Bernard, B. L. Harris, and A. D. Thackeray, Mon. Not. R. Astron. Soc. 176, 683 (1976).

    Article  ADS  Google Scholar 

  10. A. K. Dambis, L. N. Berdnikov, Yu. N. Efremov, A. Yu. Kniazev, A. S. Rastorguev, E. V. Glushkova, V. V. Kravtsov, D. G. Turner, et al., Astron. Lett. 41, 489 (2015).

    Article  ADS  Google Scholar 

  11. T. M. Dame, B. G. Elmegreen, R. S. Cohen, and P. Thaddeus, Astrophys. J. 305, 892 (1986).

    Article  ADS  Google Scholar 

  12. T. Do, G. D. Martinez, S. Yelda, A. Ghez, J. Bullock, M. Kaplinghat, J. R. Lu, A. H. G. Peter, et al., Astrophys. J. 779, L6 (2013).

    Article  ADS  Google Scholar 

  13. Yu. N. Efremov, Astron. Rep. 55, 108 (2011).

    Article  ADS  Google Scholar 

  14. B. Efron and C. Stein, Ann. Statistics 9, 586 (1981).

    Article  MathSciNet  Google Scholar 

  15. M. W. Feast and M. Shuttleworth, Mon. Not. R. Astron. Soc. 130, 245 (1965).

    Article  ADS  Google Scholar 

  16. T. Foster and B. Cooper, ASP Conf. Ser. 438, 16 (2010).

    ADS  Google Scholar 

  17. C. Francis and E. Anderson, Mon. Not. R. Astron. Soc. 422, 1283 (2012).

    Article  ADS  Google Scholar 

  18. R. Genzel, F. Eisenhauer, and S. Gillessen, Rev. Mod. Phys. 82, 3121 (2010).

    Article  ADS  Google Scholar 

  19. D. A. Grabelsky, R. S. Cohen, L. Bronfman, and P. Thaddeus, Astrophys. J. 331, 181 (1988).

    Article  ADS  Google Scholar 

  20. R. de Grijs and G. Bono, Astrophys. J. Suppl. Ser. 227, 5 (2016).

    Article  ADS  Google Scholar 

  21. L. Jílková, G. Carraro, B. Jungwiert, and I. Minchev, Astron. Astrophys. 541, A64 (2012).

    Article  Google Scholar 

  22. A. I. Kobzar’, Applied Mathematical Statistics for Engineers and Scientists (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  23. V. I. Korchagin, S. A. Khoperskov, and A. V. Khoperskov, Baltic Astron. 25, 356 (2016).

    ADS  Google Scholar 

  24. A. V. Loktin, Sov. Astron. 23, 671 (1979).

    ADS  Google Scholar 

  25. I. I. Nikiforov, ASP Conf. Ser. 316, 199 (2004).

    ADS  Google Scholar 

  26. I. I. Nikiforov and E. E. Kazakevich, Izv. GAO 219, 245 (2009).

    Google Scholar 

  27. I. I. Nikiforov and O. V. Smirnova, Astron. Nachr. 334, 749 (2013).

    Article  ADS  Google Scholar 

  28. I. I. Nikiforov and T. V. Shekhovtsova, in Stellar Dynamics: From Classic to Modern, Proceedings of the International Conference, St. Petersburg, Russia, Aug. 21–27, 2000, Ed. by L. P. Ossipkov and I. I. Nikiforov (Saint Petersburg Univ. Press, St. Petersburg, 2001), p. 28.

  29. E. D. Pavlovskaya and A. A. Suchkov, Sov. Astron. 28, 389 (1984).

    ADS  Google Scholar 

  30. M. Pohl, P. Englmaier, and N. Bissantz, Astrophys. J. 677, 283 (2008).

    Article  ADS  Google Scholar 

  31. M. E. Popova, Astron. Lett. 32, 244 (2006).

    Article  ADS  Google Scholar 

  32. M. E. Popova and A. V. Loktin, Astron. Lett. 31, 171 (2005).

    Article  ADS  Google Scholar 

  33. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge Univ. Press, Cambridge, UK, 1997).

    MATH  Google Scholar 

  34. M. H. Quenouille, Ann. Math. Statistics 20, 355 (1949).

    Article  MathSciNet  Google Scholar 

  35. M. H. Quenouille, Biometrika 43, 353 (1956).

    Article  MathSciNet  Google Scholar 

  36. M. J. Reid, K. M. Menten, X. W. Zheng, A. Brunthaler, L.Moscadelli, Y. Xu, B. Zhang, M. Sato, et al., Astrophys. J. 700, 137 (2009).

    Article  ADS  Google Scholar 

  37. M. J. Reid, K. M. Menten, A. Brunthaler, X. W. Zheng, T. M. Dame, Y. Xu, Y. Wu, B. Zhang, et al., Astrophys. J. 783, 130 (2014).

    Article  ADS  Google Scholar 

  38. S. S. Savchenko and V. P. Reshetnikov, Mon. Not. R. Astron. Soc. 436, 1074 (2013).

    Article  ADS  Google Scholar 

  39. J. P. Vallée, Astron. J. 95, 750 (1988).

    Article  ADS  Google Scholar 

  40. Y. Xu, J. J. Li, M. J. Reid, K.M. Menten, X.W. Zheng, A. Brunthaler, L. Moscadelli, T. M. Dame, et al., Astrophys. J. 769, 15 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Nikiforov.

Additional information

Original Russian Text © I.I. Nikiforov, A.V. Veselova, 2018, published in Pis’ma v Astronomicheskii Zhurnal, 2018, Vol. 44, No. 2, pp. 102–123.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikiforov, I.I., Veselova, A.V. Geometric Aspects and Testing of the Galactic Center Distance Determination from Spiral Arm Segments. Astron. Lett. 44, 81–102 (2018). https://doi.org/10.1134/S1063773717120039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773717120039

Keywords

Navigation