Skip to main content
Log in

The effect of multiplicity of stellar encounters and the diffusion coefficients in a locally homogeneous three-dimensional stellar medium: Removing the classical divergence

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Agekyan’s λ-factor that allows for the effect of multiplicity of stellar encounters with large impact parameters has been used for the first time to directly calculate the diffusion coefficients in the phase space of a stellar system. Simple estimates show that the cumulative effect, i.e., the total contribution of distant encounters to the change in the velocity of a test star, given the multiplicity of stellar encounters, is finite, and the logarithmic divergence inherent in the classical description of diffusion is removed, as was shown previously byKandrup using a different, more complex approach. In this case, the expressions for the diffusion coefficients, as in the classical description, contain the logarithm of the ratio of two independent quantities: the mean interparticle distance and the impact parameter of a close encounter. However, the physical meaning of this logarithmic factor changes radically: it reflects not the divergence but the presence of two characteristic length scales inherent in the stellar medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. A. Agekyan, Sov. Astron. 3, 41 (1959).

    ADS  MathSciNet  Google Scholar 

  2. T. A. Agekyan, Sov. Astron. 5, 809 (1961).

    ADS  Google Scholar 

  3. T. A. Agekyan, A Course of Astrophysics and Stellar Astronomy, Ed. by A. A. Mikhailov (Fizmatlit, Moscow, 1962), Vol. 2, p. 554 [in Russian].

    Google Scholar 

  4. V. A. Ambartsumyan, Uch. Zap. Leningr. Univ., No. 22, 19 (1938).

    Google Scholar 

  5. J. Binney and S. Tremaine, Galactic Dynamics (Princeton Univ. Press, Princeton, 2008).

    MATH  Google Scholar 

  6. S. Chandrasekhar, Astrophys. J. 93, 323 (1941a).

    Article  ADS  Google Scholar 

  7. S. Chandrasekhar, Astrophys. J. 94, 511 (1941b).

    Article  ADS  MathSciNet  Google Scholar 

  8. S. Chandrasekhar, Principles of Stellar Dynamics (Univ. Chicago Press, Chicago, 1942).

    MATH  Google Scholar 

  9. C. V. L. Charlier, Statistical Mechanics Based on the Law of Newton, MeLuS16, 5 (1917).

  10. P.-H. Chavanis, Eur.Phys. J. B 70, 413 (2009).

    Article  ADS  Google Scholar 

  11. P.-H. Chavanis, Eur. Phys. J. Plus 128, ID 126 (2013).

    Article  Google Scholar 

  12. O. V. Chumak and A. S. Rastorguev, Baltic Astron. 24, 30 (2015).

    ADS  Google Scholar 

  13. O. V. Chumak and A. S. Rastorguev, Astron. Lett. 42, 307 (2016).

    Article  ADS  Google Scholar 

  14. O. V. Chumak and A. S. Rastorguev, Mon. Not. R. Astron. Soc. 464, 2777 (2017).

    Article  ADS  Google Scholar 

  15. G. M. Fikhtengol’ts, A Course of Differential and Integral Calculus, 7th ed. (Nauka, Moscow, 1969), Vol. 2, p. 113 [in Russian].

    Google Scholar 

  16. M. Henon, Ann. d’Astrophys. 21, 186 (1958).

    ADS  MathSciNet  Google Scholar 

  17. P. Hertz, Math. Ann. 67, 387 (1909).

    Article  MathSciNet  Google Scholar 

  18. J. Holtsmark, Ann. Phys. 363, 577 (1919).

    Article  Google Scholar 

  19. J. H. Jeans, Problems of Cosmogony and Stellar Dynamics (Cambridge Univ. Press, Cambridge, 1919).

    MATH  Google Scholar 

  20. V. S. Kaliberda, Sov. Astron. 14, 773 (1971).

    ADS  Google Scholar 

  21. V. S. Kaliberda, Sov. Astron. 15, 766 (1972).

    ADS  Google Scholar 

  22. V. S. Kaliberda and I. V. Petrovskaya, Astrophysics 6, 63 (1970).

    Article  ADS  Google Scholar 

  23. V. S. Kaliberda and I. V. Petrovskaya, Astrophysics 7, 396 (1971).

    Article  ADS  Google Scholar 

  24. V. S. Kaliberda and I. V. Petrovskaya, Astrophysics 8, 184 (1972).

    Article  ADS  Google Scholar 

  25. H. E. Kandup, Phys. Rep. 63, 1 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  26. H. E. Kandrup, Astrophys. J. 244, 1039 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  27. I. P. King, Stellar Dynamics (Univ. Science Books, USA, 2003).

    Google Scholar 

  28. K. F. Ogorodnikov, Dynamics of Stellar Systems (Fizmatlit, Moscow, 1958) [in Russian].

    MATH  Google Scholar 

  29. P. P. Parenago, A Course of Stellar Astronomy (Fizmatlit, Moscow, 1954) [in Russian].

    Google Scholar 

  30. I. V. Petrovskaya, Sov. Astron. 13, 647 (1970a).

    ADS  MathSciNet  Google Scholar 

  31. I. V. Petrovskaya, Sov. Astron. 13, 957 (1970b).

    ADS  MathSciNet  Google Scholar 

  32. I. V. Petrovskaya, Sov. Astron. 36, 205 (1992).

    ADS  Google Scholar 

  33. M. N. Rosenbluth, W.M. MacDonald, and D. L. Judd, Phys. Rev. 107, 1 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  34. S. Rosseland, Mon. Not. R. Astron. Soc. 88, 208 (1928).

    Article  ADS  Google Scholar 

  35. W. M. Smart, Stellar Dynamics (Cambridge Univ. Press, Cambridge, 1938).

    MATH  Google Scholar 

  36. L. Spitzer, Mon. Not. R. Astron. Soc. 100, 396 (1940).

    Article  ADS  Google Scholar 

  37. M. O. Vlad, Astrophys. J. Suppl. Ser. 218, 159 (1994).

    Google Scholar 

  38. R. E. Williamson and S. Chandrasekhar, Astrophys. J. 93, 305 (1941).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Rastorguev.

Additional information

Original Russian Text © A.S. Rastorguev, N.D. Utkin, O.V. Chumak, 2017, published in Pis’ma v Astronomicheskii Zhurnal, 2017, Vol. 43, No. 8, pp. 591–600.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastorguev, A.S., Utkin, N.D. & Chumak, O.V. The effect of multiplicity of stellar encounters and the diffusion coefficients in a locally homogeneous three-dimensional stellar medium: Removing the classical divergence. Astron. Lett. 43, 536–544 (2017). https://doi.org/10.1134/S1063773717080060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773717080060

Keywords

Navigation