Skip to main content
Log in

Breakdown of the Goldreich–Julian relation in a neutron star

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The electromagnetic field in a magnetized neutron star and the underlying volume charges and currents are found. A general case of a rigidly rotating neutron star with infinite conductivity, arbitrary distribution of the internal magnetic field, arbitrarily changing angular velocity, and arbitrary surface velocity less than the velocity of light is considered. Quaternions are used to describe rotation and determine the magnetic field. It is shown that the charge density is not equal to and can exceed significantly the common Goldreich–Julian density. Moreover, corrections to the magnetic field due to stellar rotation are zero. For a rotating neutron star, twisting magnetic field lines causes charge accumulation and current flows. This fact shows a possible link between changing internal magnetic field topology and observed activity of neutron stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Alfvén and G. G. Fälthammar, Cosmical Electrodynamics (Clarendon, Oxford, 1963; Mir, Moscow, 1967).

    MATH  Google Scholar 

  2. V. S. Beskin, Phys. Usp. 42, 1071 (1999).

    Article  ADS  Google Scholar 

  3. J. Braithwaite, Mon. Not. R. Astron. Soc. 397, 763 (2009).

    Article  ADS  Google Scholar 

  4. J. Braithwaite and Å. Nordlund, Astron. Astrophys. 450, 1077 (2006).

    Article  ADS  Google Scholar 

  5. J. Braithwaite and H. C. Spruit, Nature 431, 819 (2004).

    Article  ADS  Google Scholar 

  6. V. N. Branets and I. P. Shmyglevskii, The Use of Quaternions in Problems of Rigid Body Orientation (Nauka, Moscow, 1973) [in Russian].

    MATH  Google Scholar 

  7. Yu. M. Bruk, Astrophysics 11, 62 (1975).

    Article  ADS  Google Scholar 

  8. Yu. M. Bruk and K. I. Kugel’, Astrophysics 12, 217 (1976a).

    Article  ADS  Google Scholar 

  9. Ju. M. Bruk and K. I. Kugel, Astrophys. Space Sci. 39, 243 (1976b).

    Article  ADS  Google Scholar 

  10. Yu. M. Bruk and K. I. Kugel’, Sov. Astron. 21, 58 (1977).

    ADS  Google Scholar 

  11. S. Burke-Spolaor and M. Bailes, Mon. Not. R. Astron. Soc. 402, 855 (2010).

    Article  ADS  Google Scholar 

  12. P. A. Caraveo, Ann. Rev. 52, 211 (2014).

    Google Scholar 

  13. R. Ciolfi and L. Rezzolla, Mon. Not. R. Astron. Soc. 435, L43 (2013).

    Article  ADS  Google Scholar 

  14. R. Ciolfi, S. K. Lander, G.M. Manca, and L. Rezzolla, Astrophys. J. 736, L6 (2011).

    Article  ADS  Google Scholar 

  15. C. Cutler, Phys. Rev. D 66, 084025 (2002).

    Article  ADS  Google Scholar 

  16. A. T. Deibel, A. W. Steiner, and E. F. Brown, Phys. Rev. C 90, 025802 (2014).

    Article  ADS  Google Scholar 

  17. R. C. Duncan, Astrophys. J. 498, L45 (1998).

    Article  ADS  Google Scholar 

  18. A. Esamdin, D. Abdurixit, R. N. Manchester, and H. B. Niu, Astrophys. J. 759, L3 (2012).

    Article  ADS  Google Scholar 

  19. C. M. Espinoza, A. G. Lyne, B. W. Stappers, and M. Kramer, Mon. Not. R. Astron. Soc. 414, 1679 (2011).

    Article  ADS  Google Scholar 

  20. F. Garciá and I. F. Ranea-Sandoval, Mon. Not. R. Astron. Soc. 449, L73 (2015).

    Article  ADS  Google Scholar 

  21. P. R. Girard, Quaternions, Clifford Algebras, and Relativistic Physics (Birkhäuser, Basel, 2007).

    MATH  Google Scholar 

  22. J. P. (Hans) Goedbloed, R. Keppens, and S. Poedts, Advanced Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas (Cambridge Univ. Press, Cambridge, 2010).

    Book  Google Scholar 

  23. P. Goldreich and W. H. Julian, Astrophys. J. 157, 869 (1969).

    Article  ADS  Google Scholar 

  24. B. Haskell and A. Melatos, Int. J. Mod. Phys. D 24, 1530008 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  25. Ya. N. Istomin and D. N. Sob’yanin, Astron. Lett. 33, 660 (2007).

    Article  ADS  Google Scholar 

  26. Ya. N. Istomin and D. N. Sob’yanin, Astron. Lett. 37, 468 (2011a).

    Article  ADS  Google Scholar 

  27. Ya. N. Istomin and D. N. Sob’yanin, J. Exp. Theor. Phys. 113, 592 (2011b).

    Article  ADS  Google Scholar 

  28. Ya. N. Istomin and D. N. Sob’yanin, J. Exp. Theor. Phys. 113, 605 (2011c).

    Article  ADS  Google Scholar 

  29. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999).

    MATH  Google Scholar 

  30. A. D. Kaminker, A. A. Kaurov, A. Y. Potekhin, and D. G. Yakovlev, ASP Conf. Ser. 466, 237 (2012).

    ADS  Google Scholar 

  31. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Pergamon, Oxford, 1975; Nauka, Moscow, 1988).

    Google Scholar 

  32. L. D. Landau and E.M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

    Google Scholar 

  33. S. K. Lander, Phys. Rev. Lett. 110, 071101 (2013).

    Article  ADS  Google Scholar 

  34. S. K. Lander, Mon. Not. R. Astron. Soc. 437, 424 (2014).

    Article  ADS  Google Scholar 

  35. S. K. Lander, N. Andersson, D. Antonopoulou, and A. L. Watts, Mon. Not. R. Astron. Soc. 449, 2047 (2015).

    Article  ADS  Google Scholar 

  36. B. Link, Astrophys. Space Sci. 308, 435 (2007).

    Article  ADS  Google Scholar 

  37. K. Makishima, T. Enoto, J. S. Hiraga, T. Nakano, K. Nakazawa, S. Sakurai, M. Sasano, and H. Murakami, Phys. Rev. Lett. 112, 171102 (2014).

    Article  ADS  Google Scholar 

  38. A. Mastrano, A. Melatos, A. Reisenegger, and T. Akgün, Mon. Not. R. Astron. Soc. 417, 2288 (2011).

    Article  ADS  Google Scholar 

  39. A. Mastrano, A. G. Suvorov, and A. Melatos, Mon. Not. R. Astron. Soc. 453, 522 (2015).

    Article  ADS  Google Scholar 

  40. M. A. McLaughlin, A. G. Lyne, D. R. Lorimer, M. Kramer, A. J. Faulkner, R. N. Manchester, J. M. Cordes, F. Camilo, et al., Nature 439, 817 (2006).

    Article  ADS  Google Scholar 

  41. S. Mereghetti, Astron. Astrophys. Rev. 15, 225 (2008).

    Article  ADS  Google Scholar 

  42. J. J. Miller, M. A. McLaughlin, N. Rea, K. Lazaridis, E. F. Keane, M. Kramer, and A. Lyne, Astrophys. J. 776, 104 (2013).

    Article  ADS  Google Scholar 

  43. I. Ya. Pomeranchuk, Zh. Eksp. Teor. Fiz. 20, 919 (1950).

    Google Scholar 

  44. A. N. Timokhin, G. S. Bisnovatyi-Kogan, and H. C. Spruit, Mon. Not. R. Astron. Soc. 316, 734 (2000).

    Article  ADS  Google Scholar 

  45. N. Wang, R. N. Manchester, and S. Johnston, Mon. Not. R. Astron. Soc. 377, 1383 (2007).

    Article  ADS  Google Scholar 

  46. O. Zanotti, V. Morozova, and B. Ahmedov, Astron. Astrophys. 540, A126 (2012).

    Article  ADS  Google Scholar 

  47. V. F. Zhuravlev, Principles of Theoretical Mechanics, 2nd ed. (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Sob’yanin.

Additional information

Published in Russian in Pis’ma v Astronomicheskii Zhurnal, 2016, Vol. 42, No. 11, pp. 818–825.

The article was translated by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sob’yanin, D.N. Breakdown of the Goldreich–Julian relation in a neutron star. Astron. Lett. 42, 745–751 (2016). https://doi.org/10.1134/S1063773716110049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773716110049

Keywords

Navigation