Skip to main content
Log in

Search for kinematic siblings of the sun based on data from the XHIP catalog

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

From the XHIP catalogue, we have selected 1872 F-G-K stars with relative parallax measurement errors <20% and absolute values of their space velocities relative to the Sun <15 km s−1. For all these stars, we have constructed their Galactic orbits for 4.5 Gyr into the past using an axisymmetric Galactic potential model with allowance made for the perturbations from the spiral density wave. Parameters of the encounter with the solar orbit have been calculated for each orbit. We have detected three new stars whose Galactic orbits were close to the solar one during a long time interval in the past. These stars are HIP 43852, HIP 104047, and HIP 112158. The spectroscopic binary HIP 112158 is poorly suited for the role of a kinematic sibling of the Sun by its age and spectroscopic characteristics. For the single star HIP 43852 and the multiple system HIP 104047, this role is quite possible. We have also confirmed the status of our previously found candidates for close encounters, HIP 47399 and HIP 87382. The star HIP 87382 with a chemical composition very close to the solar one is currently the most likely candidate, because it persistently shows close encounters with the Sun on time scales of more than 3 Gyr when using various Galactic potential models both without and with allowance made for the influence of the spiral density wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Allen and A. Santillan, Rev. Mex. Astron. Astrofis. 22, 255 (1991).

    ADS  Google Scholar 

  2. E. Anderson and Ch. Francis, Astron. Lett. 38, 331 (2012).

    Article  ADS  Google Scholar 

  3. S. F. A. Batista and J. Fernandes, New Astron. 17, 514 (2012).

    Article  ADS  Google Scholar 

  4. J. Bland-Hawthorn and K. Freeman, Publ. Astron. Soc. Austral. 21, 110 (2004).

    Article  ADS  Google Scholar 

  5. J. Bland-Hawthorn, M. R. Krumholz, and K. Freeman, Astrophys. J. 713, 166 (2010).

    Article  ADS  Google Scholar 

  6. V. Bobylev and A. Bajkova, Mon. Not. R. Astron. Soc. 408, 1788 (2010).

    Article  ADS  Google Scholar 

  7. V. V. Bobylev, A. T. Bajkova, A. Mylläri, and M. Valtonen, Astron. Lett. 37, 550 (2011).

    Article  ADS  Google Scholar 

  8. V. V. Bobylev and A. T. Bajkova, Astron. Lett. 38, 638 (2012).

    Article  ADS  Google Scholar 

  9. V. V. Bobylev and A. T. Bajkova, Astron. Lett. 39, 809 (2013a).

    Article  ADS  Google Scholar 

  10. V. V. Bobylev and A. T. Bajkova, Astron. Lett. 39, 759 (2013b).

    Article  ADS  Google Scholar 

  11. V. V. Bobylev and A. T. Bajkova, Astron. Lett. 39, 532 (2013c).

    Article  ADS  Google Scholar 

  12. V. Bobylev and A. Bajkova, Mon. Not. R. Astron. Soc. 437, 1549 (2014).

    Article  ADS  Google Scholar 

  13. A. G. A. Brown, S. F. Portegies Zwart, and J. Bean, Mon. Not. R. Astron. Soc. 407, 458 (2010).

    Article  ADS  Google Scholar 

  14. L. Casagrande, R. Schönrich, M. Asplund, S. Cassisi, I. Ram’rez, J. Mel’ndez, T. Bensby, and S. Feltzing, Astron. Astrophys. 530, 138 (2011).

    Article  ADS  Google Scholar 

  15. P. Demarque, J.-H. Woo, Y.-C. Kim, and K. Sukyoung, Astrophys. J. Suppl. Ser. 155, 667 (2004).

    Article  ADS  Google Scholar 

  16. M. Fellhauer, V. Belokurov, N. W. Evans, M. I. Wilkinson, D. B. Zucker, G. Gilmore, M. J. Irwin, D. M. Bramich, et al., Astrophys. J. 651, 167 (2006).

    Article  ADS  Google Scholar 

  17. D. Fernandez, F. Figueras, and J. Torra, Astron. Astrophys. 480, 735 (2008).

    Article  ADS  Google Scholar 

  18. T. Foster and B. Cooper, Astron. Soc. Pacific Conf. 438, 16 (2010).

    ADS  Google Scholar 

  19. O. Gerhard, Mem. Soc. Astron. Ital. Suppl. 18, 185 (2011).

    ADS  Google Scholar 

  20. G. A. Gontcharov, Astron. Lett. 32, 759 (2006).

    Article  ADS  Google Scholar 

  21. L. Hernquist, Astrophys. J. 356, 359 (1990).

    Article  ADS  Google Scholar 

  22. E. Høg, C. Fabricius, V. V. Makarov, S. Urban, T. Corbin, G. Wycoff, U. Bastian, P. Schwekendiek, and A. Wicenec, Astron. Astrophys. 355, L27 (2000).

    ADS  Google Scholar 

  23. Y. C. Joshi, Mon. Not. R. Astron. Soc. 378, 768 (2007).

    Article  ADS  Google Scholar 

  24. F. van Leeuwen, Astron. Astrophys. 474, 653 (2007).

    Article  ADS  Google Scholar 

  25. J. R. D. Lépine, Yu. N. Mishurov, and S. Yu. Dedikov, Astrophys. J. 546, 234 (2001).

    Article  ADS  Google Scholar 

  26. C. C. Lin and F. H. Shu, Astrophys. J. 140, 646 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  27. C. C. Lin, C. Yuan, and F. H. Shu, Astrophys. J. 155, 721 (1969).

    Article  ADS  Google Scholar 

  28. O. Yu. Malkov, V. S. Tamazian, J. A. Docobo, and D. A. Chulkov, Astron. Astrophys. 546, 69 (2012).

    Article  ADS  Google Scholar 

  29. B. D. Mason, G. L. Wycoff, W. I. Hartkopf, G. G. Douglass, and C. E. Worley, Astron. J. 122, 3466 (2001).

    Article  ADS  Google Scholar 

  30. A. Massarotti, D. W. Latham, R. P. Stefanik, P. Robert, and J. Fogel, Astron. J. 135, 209 (2008).

    Article  ADS  Google Scholar 

  31. Yu. N. Mishurov and I. A. Acharova, Mon. Not. R. Astron. Soc. 412, 1771 (2011).

    Article  ADS  Google Scholar 

  32. M. Miyamoto and R. Nagai, Publ. Astron. Soc. Jpn. 27, 533 (1975).

    ADS  Google Scholar 

  33. D. Montes, J. López-Santiago, M. C. Gálvez, M. J. Fern’ndez-Figueroa, E. De Castro, and M. Cornide, Mon. Not. R. Astron. Soc. 328, 45 (2001)

    Article  ADS  Google Scholar 

  34. T. Nakajima and J.-I. Morino, Astron. J. 143, 2 (2012).

    Article  ADS  Google Scholar 

  35. B. Nordstrom, M. Mayor, J. Andersen, J. Holmberg, F. Pont, B. R. Jørgensen, E. H. Olsen, S. Udry, and N. Mowlavi, Astron. Astrophys. 418, 989 (2004).

    Article  ADS  Google Scholar 

  36. S. B. Parsons, Astron. J. 127, 2915 (2004).

    Article  ADS  Google Scholar 

  37. S. Pfalzner, Astron. Astrophys. 549, 82 (2013).

    Article  ADS  Google Scholar 

  38. M. E. Popova and A. V. Loktin, Astron. Lett. 31, 171 (2005).

    Article  ADS  Google Scholar 

  39. S. F. Portegies Zwart, Astrophys. J. 696, L13 (2009).

    Article  ADS  Google Scholar 

  40. D. Pourbaix, A. A. Tokovinin, A. H. Batten, F. C. Fekel, W. I. Hartkopf, H. Levato, N. I. Morrell, G. Torres, and S. Udry, Astron. Astrophys. 424, 727 (2004).

    Article  ADS  Google Scholar 

  41. R. Schönrich, J. Binney, and W. Dehnen, Mon. Not. R. Astron. Soc. 403, 1829 (2010).

    Article  ADS  Google Scholar 

  42. A. Tokovinin, Mon. Not. R. Astron. Soc. 389, 925 (2008).

    Article  ADS  Google Scholar 

  43. J. A. Valenti and D. A. Fischer, Astrophys. J. Suppl. Ser. 159, 141 (2005).

    Article  ADS  Google Scholar 

  44. J. P. Vallée, Astron. J. 135, 1301 (2008).

    Article  ADS  Google Scholar 

  45. C. Yuan, Astrophys. J. 158, 889 (1969).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Bobylev.

Additional information

Original Russian Text © V.V. Bobylev, A.T. Bajkova, 2014, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2014, Vol. 40, No. 6, pp. 396–403.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobylev, V.V., Bajkova, A.T. Search for kinematic siblings of the sun based on data from the XHIP catalog. Astron. Lett. 40, 353–360 (2014). https://doi.org/10.1134/S1063773714060012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773714060012

Keywords

Navigation